Abstract

The unique structure of hybrid robot makes its dynamic characteristic different from that of the traditional machine tools. Therefore, the dynamic model is crucial to both designing and application of hybrid robot. In this paper, a new type of five-degrees-of-freedom (5DoF) hybrid robot is introduced, and its dynamic model is established. First, the kinematic formulas are derived for all the component, and then, the inertia forces or moments are calculated. Second, the active forces or moments in the joints are assumed as variables and the number of variables is reduced by analyzing joint types. Then, an equation set of 36 equilibrium equations with 38 variables is obtained using D'Alembert's principle. Based on the spatial deformation compatibility analysis of two branches, two supplementary equations are derived to determine the solution of dynamic model of the hybrid robot with redundant constraints in its parallel mechanism. Several cases are studied by comparing with ADAMS simulation. The result shows the good accuracy of the proposed dynamic model, which provides a practical method to calculate the reaction force or moment in any joint at any instant for the hybrid robot and thus facilitates dimensional synthesis, trajectory optimization, and smoothing control.

References

1.
Xie
,
F.
,
Liu
,
X.-J.
, and
Wang
,
J.
,
2012
, “
A 3-DOF Parallel Manufacturing Module and Its Kinematic Optimization
,”
Robot. Comput.-Integr. Manuf.
,
28
(
3
), pp.
334
343
.
2.
Bi
,
Z. M.
, and
Wang
,
L.
,
2012
, “
Energy Modeling of Machine Tools for Optimization of Machine Setups
,”
IEEE Trans. Autom. Sci. Eng.
,
9
(
3
), pp.
607
613
.
3.
Xu
,
P.
,
Cheung
,
C. F.
,
Wang
,
C.
, and
Zhao
,
C.
,
2020
, “
Novel Hybrid Robot and Its Processes for Precision Polishing of Freeform Surfaces
,”
Precis. Eng.
,
64
, pp.
53
62
.
4.
Xu
,
P.
,
Cheung
,
C. F.
,
Li
,
B.
,
Wang
,
C.
, and
Zhao
,
C.
,
2021
, “
Design, Dynamic Analysis, and Experimental Evaluation of a Hybrid Parallel–Serial Polishing Machine With Decoupled Motions
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061008
.
5.
Xu
,
Y.
,
Zhao
,
Y.
,
Yue
,
Y.
,
Xi
,
F.
,
Yao
,
J.
, and
Zhao
,
Y.
,
2020
, “
Type Synthesis of Overconstrained 2R1 T Parallel Mechanisms With the Fewest Kinematic Joints Based on the Ultimate Constraint Wrenches
,”
Mech. Mach. Theory
,
147
, p.
103766
.
6.
Zhang
,
F.
,
Mei
,
J.
, and
Zhao
,
Y.
,
2020
, “
Dimensional Synthesis of Six-Degrees-of-Freedom High-Speed Parallel Robot Using Comprehensive Evaluation Index
,”
J. Mech. Sci. Technol.
,
34
(
3
), pp.
1325
1338
.
7.
Huang
,
T.
,
Liu
,
S.
,
Mei
,
J.
, and
Chetwynd
,
D. G.
,
2013
, “
Optimal Design of a 2-DOF Pick-and-Place Parallel Robot Using Dynamic Performance Indices and Angular Constraints
,”
Mech. Mach. Theory
,
70
, pp.
246
253
.
8.
Rakhodaei
,
H.
,
Saadat
,
M.
,
Rastegarpanah
,
A.
, and
Abdullah
,
C. Z.
,
2016
, “
Path Planning of the Hybrid Parallel Robot for Ankle Rehabilitation
,”
Robotica
,
34
(
1
), pp.
173
184
.
9.
Chang
,
J.
,
Li
,
B.
,
Zhang
,
G.
,
Liang
,
Z.
, and
Wang
,
C.
, 2017, “
The Control Algorithm of 7 DOF Manipulator Based on Hybrid Force and Position Algorithm
,”
Proceedings of the 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER)
,
IEEE
, pp.
645
650
.
10.
Briot
,
S.
,
Pagis
,
G.
,
Bouton
,
N.
, and
Martinet
,
P.
,
2016
, “
Degeneracy Conditions of the Dynamic Model of Parallel Robots
,”
Multibody Syst. Dyn.
,
37
(
4
), pp.
371
412
.
11.
Daachi
,
M. E. H.
,
Achili
,
B.
,
Daachi
,
B.
,
Amirat
,
Y.
, and
Chikouche
,
D.
,
2012
, “
Hybrid Moment/Position Control of a Parallel Robot
,”
Int. J. Control Autom. Syst.
,
10
(
3
), pp.
536
546
.
12.
Zhuang
,
P.
, and
Yao
,
Z.
,
2006
, “
Dynamics and Control of Cable-Suspended Parallel Robots for Giant Telescopes
,”
Ground-based and Airborne Telescopes
,
International Society for Optics and Photonics
, Vol.
6267
, p.
62673H
.
13.
Tang
,
T.
, and
Zhang
,
J.
,
2019
, “
Conceptual Design and Kinetostatic Analysis of a Modular Parallel Kinematic Machine-Based Hybrid Machine Tool for Large Aeronautic Components
,”
Robot. Comput.-Integr. Manuf.
,
57
, pp.
1
16
.
14.
Wu
,
J.
,
Wang
,
J.
,
Li
,
T.
,
Wang
,
L.
, and
Guan
,
L.
,
2008
, “
Dynamic Dexterity of a Planar 2-DOF Parallel Manipulator in a Hybrid Machine Tool
,”
Robotica
,
26
(
1
), pp.
93
98
.
15.
Bi
,
Z. M.
, and
Kang
,
B.
,
2014
, “
An Inverse Dynamic Model of Over-constrained Parallel Kinematic Machine Based on Newton–Euler Formulation.”
ASME J. Dyn. Syst. Meas. Control
,
136
(
4
), p.
041001
.
16.
Liu
,
W.-L.
,
Xu
,
Y.-D.
,
Yao
,
J.-T.
, and
Zhao
,
Y.-S.
,
2017
, “
Methods for Force Analysis of Overconstrained Parallel Mechanisms: a Review
,”
Chin. J. Mech. Eng.
,
30
(
6
), pp.
1460
1472
.
17.
Li
,
M.
,
Huang
,
T.
,
Mei
,
J.
,
Zhao
,
X.
,
Chetwynd
,
D. G.
, and
Jack Hu
,
S.
,
2005
, “
Dynamic Formulation and Performance Comparison of the 3-DOF Modules of Two Reconfigurable PKM—the Tricept and the Trivariant
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1129
1136
.
18.
Kalani
,
H.
,
Rezaei
,
A.
, and
Akbarzadeh
,
A.
,
2016
, “
Improved General Solution for the Dynamic Modeling of Gough–Stewart Platform Based on Principle of Virtual Work
,”
Nonlinear Dyn.
,
83
(
4
), pp.
2393
2418
.
19.
Sun
,
H.
,
Zhang
,
Y.
,
Xie
,
B.
, and
Zi
,
B.
,
2020
, “
Dynamic Modeling and Error Analysis of a Cable-Linkage Serial-Parallel Palletizing Robot
,”
IEEE Access
,
9
, pp.
2188
2200
.
20.
Martini
,
A.
,
Troncossi
,
M.
, and
Rivola
,
A.
,
2019
, “
Algorithm for the Static Balancing of Serial and Parallel Mechanisms Combining Counterweights and Springs: Generation, Assessment and Ranking of Effective Design Variants
,”
Mech. Mach. Theory
,
137
, pp.
336
354
.
21.
Palomba
,
I.
,
Wehrle
,
E.
,
Carabin
,
G.
, and
Vidoni
,
R.
,
2020
, “
Minimization of the Energy Consumption in Industrial Robots Through Regenerative Drives and Optimally Designed Compliant Elements
,”
Appl. Sci.
,
10
(
21
), p.
7475
.
22.
Silver
,
W. M.
,
1982
, “
On the Equivalence of Lagrangian and Newton-Euler Dynamics for Manipulators
,”
Int. J. Rob. Res.
,
1
(
2
), pp.
60
70
.
23.
Nurahmi
,
L.
, and
Gan
,
D.
,
2019
, “
Dynamic Analysis of the 3-RRPS Metamorphic Parallel Mechanism Based on Instantaneous Screw Axis
,”
Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5A: 43rd Mechanisms and Robotics Conference
,
Anaheim, CA
,
Aug. 18–21
,
ASME
, p.
V05AT07A064
.
24.
Li
,
J.
,
Ye
,
F.
,
Shen
,
N.
,
Wang
,
Z.
,
Geng
,
L.
,
2020
, “
Dimensional Synthesis of a 5-DOF Hybrid Robot
,”
Mech. Mach. Theory
,
150
, p.
103865
.
25.
Eddie Baker
,
J.
,
1988
, “
The Bennett Linkage and Its Associated Quadric Surfaces
,”
Mech. Mach. Theory
,
23
(
2
), pp.
147
156
.
27.
Xu
,
Y.
,
Liu
,
W.
,
Yao
,
J.
, and
Zhao
,
Y.
,
2015
, “
A Method for Force Analysis of the Overconstrained Lower Mobility Parallel Mechanism
,”
Mech. Mach. Theory
,
88
, pp.
31
48
.
28.
Zhu
,
C. X.
,
Liu
,
Y. X.
,
Cai
,
G. Q.
,
Zhu
,
L. D.
, and
Viajy
,
K.
,
2008
, “
Dynamics Simulation Analysis of Flexible Multibody of Parallel Robot.
Appl. Mech. Mater.
,
10
, pp.
647
651
.
29.
Zhu
,
C.
,
Zhu
,
L.
,
Liu
,
Y.
, and
Cai
,
G.
,
2008
, “
Modeling of Parallel Robots in Coordination With Flexible Multibody System and Dynamic Simulation
,”
J. Northeast. Univ., Nat. Sci.
,
29
(
3
), p.
366
.
30.
Vidoni
,
R.
,
Gasparetto
,
A.
, and
Giovagnoni
,
M.
,
2014
, “
A Method for Modeling Three-Dimensional Flexible Mechanisms Based on an Equivalent Rigid-Link System
,”
J. Vib. Control
,
20
(
4
), pp.
483
500
.
31.
Shen
,
Ny.
,
Geng
,
L.
,
Li
,
J.
,
Yuan
,
Hm.
,
Wang
,
Zr.
, and
Lu
,
Nh.
,
2020
, “
Inverse Solution Method for Kinematics of Five-Degree-of-Freedom Series-Parallel Robot With Parasitic Motion
,”
CN111113425A
(in Chinese).
You do not currently have access to this content.