Abstract

Current space engineering projects such as large space structure erection and spacecraft maintenance tasks require robots with space truss climbing capability. To adapt to the complex climbing environment, this paper developed a multi-branch reconfigurable robot suitable for space truss climbing by using a cellular space robot (CSR). In different climbing environments, the robot can switch between different motion modes by changing the modules’ states. Considering the kinematic modeling problem after module reconfiguration, this paper analyzes the kinematics of the CSR based on the screw theory and extends it to any multi-branch configuration. Meanwhile, for the problem that it is difficult to obtain the inverse kinematic analytical solution of the multi-branch robot climbing mode with planar continuous three-parallel joints, the kinematic analytical algorithm for different configurations is given by combining algebraic and geometric methods. Besides, a 3D truss climbing environment is built, and the kinematic characteristics of the robot joint drive force, working space, and motion energy consumption under different motion modes of the multi-branched robot are analyzed. The results indicate that the developed multi-branched robot has good 3D space truss climbing capability and provides a basis for selecting its working mode in orbit. This study can help to broaden the application field of CSRs in orbit.

References

1.
Li
,
W. J.
,
Cheng
,
D. Y.
,
Liu
,
X. G.
,
Wang
,
Y. B.
,
Shi
,
W. H.
,
Tang
,
Z. X.
,
Gao
,
F.
,
Zeng
,
F. M.
,
Chai
,
H. Y.
, and
Luo
,
W. B.
,
2019
, “
On-Orbit Service (OOS) of Spacecraft: A Review of Engineering Developments
,”
Prog. Aerosp. Sci.
,
108
, pp.
32
120
.
2.
Hou
,
X. Y.
,
Zhang
,
F.
,
Huang
,
P. F.
,
Ma
,
X. F.
,
Zhu
,
J. L.
, and
Li
,
Y.
,
2022
, “
Integrated Attitude and Vibration Control of Space Large Antenna With Truss
,”
Acta Aeron. Astron. Sin.
,
42
, pp.
1
9
.
3.
Qiu
,
H.
,
Liu
,
Z. Q.
,
Zeng
,
H. Z.
,
Bai
,
Z. G.
, and
Yang
,
Z.
,
2019
, “
Review of Deployable SAR Antenna Structures of Spacecraft
,”
J. Aeronaut.
,
42
(
10
), pp.
107
128
.
4.
Ding
,
X.
,
Wang
,
Y.
,
Wang
,
Y.
, and
Xu
,
K.
,
2021
, “
A Review of Structures, Verification, and Calibration Technologies of Space Robotic Systems for On-Orbit Servicing
,”
Sci. China Technol. Sci.
,
64
(
3
), pp.
462
480
.
5.
Jiayu
,
L. I. U.
,
Tongtong
,
L. I.
,
Zhangguo
,
Y. U.
,
Xuechao
,
C.
, and
Qiang
,
H.
,
2019
, “
On Whole-Body Contact Compliance Control for Spatial Multi-Arm Robot Manipulating a Large Target
,”
Acta Armam.
,
40
(
2
), pp.
395
403
.
6.
Rastegari
,
R.
, and
Moosavian
,
S. A. A.
,
2010
, “
Multiple Impedance Control of Space Free-Flying Robots Via Virtual Linkages
,”
Acta Astron.
,
66
(
5–6
), pp.
748
759
.
7.
Jia
,
Q.-X.
,
Ping
,
Y.
,
Sun
,
H.-X.
, and
Song
,
J.-Z.
,
2005
, “
Kinematics of a Trinal-Branch Space Robotic Manipulator With Redundancy
,”
Chin. J. Aeron.
,
18
(
4
), pp.
378
384
.
8.
Zhao
,
J.
,
Han
,
J.
,
Gu
,
Y.
,
Zhao
,
L.
,
Ni
,
F.
,
Sun
,
Y.
,
Fan
,
S.
, and
Liu
,
H.
, “
Translational and Tumbling Gaits for Trinal-Branch Robots
,”
Proceedings of 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Macau, China
,
Dec. 5–8
, IEEE, pp.
2354
2359
.
9.
Wang
,
M. M.
,
Luo
,
J. J.
,
Yuan
,
J. P.
,
Wang
,
J. W.
, and
Liu
,
C.
,
2021
, “
A Review of Space On-Orbit Assembly Technology
,”
J. Aeron. Astron.
,
42
(
01
), pp.
47
61
.
10.
Jiang
,
S. H.
,
Pan
,
C. C.
,
Yuan
,
L. Y.
, and
Song
,
Q.
,
2015
, “
Mechanism Design and Simulation of Hexapod Mitigation Rescue Bionic Robot
,”
J. Comput. Simul.
,
32
(
11
), pp.
373
377
.
11.
Tang
,
Z.
,
Wang
,
K.
,
Spyrakos-Papastavridis
,
E.
, and
Dai
,
J. S.
,
2022
, “
Origaker: A Novel Multi-mimicry Quadruped Robot Based on a Metamorphic Mechanism
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
061005
.
12.
Zhang
,
C.
,
Zhang
,
C.
,
Dai
,
J. S.
, and
Qi
,
P.
,
2019
, “
Stability Margin of a Metamorphic Quadruped Robot With a Twisting Trunk
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
064501
.
13.
Chang
,
H. T.
,
Huang
,
P. F.
,
Wang
,
M.
, and
Meng
,
Z.
,
2016
, “
Distributed Control Allocation for Cellular Space Robot
,”
Acta Aeronaut. Astronaut. Sinica.
,
37
(
9
), pp.
2864
2873
.
14.
Gao
,
Y.
, and
Chien
,
S.
,
2017
, “
Review on Space Robotics: Toward Top-Level Science Through Space Exploration
,”
Sci. Robot.
,
2
(
7
), p.
eaan5074
.
15.
Flores-Abad
,
A.
,
Ma
,
O.
,
Pham
,
K.
, and
Ulrich
,
S.
,
2014
, “
A Review of Space Robotics Technologies for On-Orbit Servicing
,”
Prog. Aerosp. Sci.
,
68
(
8
), pp.
1
26
.
16.
Liang
,
B.
,
Du
,
X.
,
Li
,
C.
, and
Xu
,
W.
,
2012
, “
Advances in Space Robot On-Orbit Servicing for Non-Cooperative Spacecraft
,”
Robot
,
34
(
2
), pp.
242
256
.
17.
Hang
,
Z.
,
Yang
,
Z.
, and
Hao
,
T.
,
2018
, “
Key Techniques and Applications of Space Cellular Robotic System
,”
J. Astronaut.
,
39
(
10
), pp.
1071
1080
.
18.
An
,
D. X.
,
2016
, “
Research on the System of CSR
,”
Doctoral dissertation
,
Harbin Institute of Technology
,
Harbin
.
19.
Du
,
Y. L.
,
2014
, “
Research on Decentralized Control and Active Fault Tolerant Control for Reconfigurable Manipulator
,”
Doctoral dissertation
,
Jilin University
,
Changchun
.
20.
Pei
,
J. F.
,
Xu
,
D. Z.
, and
Wang
,
H.
,
2017
, “
Inverse Kinematics Analyses of 3-Finger Robot Dexterous Hand Based on Screw Theory
,”
China Mech. Eng.
,
28
(
24
), pp.
2975
2980
.
21.
Jian
,
X.
,
Wenyi
,
Q.
,
Bin
,
L.
, and
Cheng
,
L.
, “
Inverse Kinematics Problem for 6-DOF Space Manipulator Based on the Theory of Screws
,”
Proceedings of 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Sanya, China
,
Dec. 15–18
, IEEE, pp.
1659
1663
.
22.
Sariyildiz
,
E.
,
Cakiray
,
E.
, and
Temeltas
,
H.
,
2011
, “
A Comparative Study of Three Inverse Kinematic Methods of Serial Industrial Robot Manipulators in the Screw Theory Framework
,”
Int. J. Adv. Rob. Syst.
,
8
(
5
), p.
64
.
23.
You
,
B.
,
Wen
,
X.
,
Liu
,
Y.
,
Tan
,
C.
,
An
,
D.
,
Tian
,
H.
, and
Zhao
,
Y.
,
2020
, “
Gait Analysis of CSR for On-Orbit Climbing Truss
,”
J. Aeronaut.
,
41
(
5
), pp.
521
530
.
24.
Tavakoli
,
M.
, and
Marques
,
L.
,
2011
, “
3DCLIMBER: Climbing and Manipulation Over 3D Structures
,”
Mechatronics
,
21
(
1
), pp.
48
62
.
25.
Henrey
,
M.
,
Ahmed
,
A.
,
Boscariol
,
P.
,
Shannon
,
L.
, and
Menon
,
C.
,
2014
, “
Abigaille-III: A Versatile, Bioinspired Hexapod for Scaling Smooth Vertical Surfaces
,”
J. Bionic. Eng.
,
11
(
1
), pp.
1
17
.
26.
Nechyba
,
M. C.
, and
Xu
,
Y.
,
1995
, “
Human-Robot Cooperation in Space: SM/SUP 2/for New Space Station Structure
,”
IEEE Robot. Autom. Mag.
,
2
(
4
), pp.
4
11
.
27.
Gregory
,
J.
,
Olivares
,
A.
, and
Staffetti
,
E.
,
2012
, “
Energy-Optimal Trajectory Planning for Robot Manipulators With Holonomic Constraints
,”
Syst. Control Lett.
,
61
(
2
), pp.
279
291
.
You do not currently have access to this content.