Abstract

In flapping-wing air vehicles, the flapping mechanism is directly related to the movement of the wing making it one of the major factors in determining aerodynamic performance. In this study, a method to increase aerodynamic performance using the flapping mechanism is discussed. This paper presents a twist-coupled mechanism that can increase thrust by combining twisting motion with flapping motion. The proposed mechanism generates twisting motion by the 4-bar planar link mechanism and flapping motion by the 4-bar spatial link mechanism. The mechanism can be driven by only one actuator by connecting two crankshafts with a pair of gears and rotating them at once. Here, we define the design parameters and constraints and search for the optimal design parameters to maximize aerodynamic force. Optimization is carried out by a genetic algorithm, a global optimization algorithm, combining kinematic and aerodynamic analyses. We then search for the design parameters that maximize thrust. Based on our optimization results, the proposed mechanism has the figure-of-eight wingtip trajectory motion like the flying animals. The aerodynamic efficiency of the proposed mechanism was validated by an aerodynamic measurement test comparing a reference mechanism that can only generate flapping motion without twisting motion. For comparative validation, prototypes of the proposed mechanism and the reference mechanism were designed and fabricated. Thrust and lift were measured by the wind tunnel test. From the wind tunnel test, it is confirmed that the proposed mechanism can generate aerodynamic loads more efficiently than the reference mechanism.

References

1.
Shyy
,
W.
,
Aono
,
H.
,
Kang
,
C.-k.
, and
Liu
,
H.
,
2013
,
An Introduction to Flapping Wing Aerodynamics
, Vol. 37,
Cambridge University Press
,
Cambridge, UK
.
2.
Dial
,
K. P.
,
Biewener
,
A. A.
,
Tobalske
,
B. W.
, and
Warrick
,
D.
,
1997
, “
Mechanical Power Output of Bird Flight
,”
Nature
,
390
(
6655
), pp.
67
70
.
3.
Lindhe Norberg
,
U. M.
,
2002
, “
Structure, Form, and Function of Flight in Engineering and the Living World
,”
J. Morphol.
,
252
(
1
), pp.
52
81
.
4.
Tobalske
,
B.
, and
Dial
,
K.
,
1996
, “
Flight Kinematics of Black-Billed Magpies and Pigeons Over a Wide Range of Speeds
,”
J. Exp. Biol.
,
199
(
2
), pp.
263
280
.
5.
Young
,
J.
,
Walker
,
S. M.
,
Bomphrey
,
R. J.
,
Taylor
,
G. K.
, and
Thomas
,
A. L.
,
2009
, “
Details of Insect Wing Design and Deformation Enhance Aerodynamic Function and Flight Efficiency
,”
Science
,
325
(
5947
), pp.
1549
1552
.
6.
Jiakun
,
H.
,
Zhe
,
H.
,
Fangbao
,
T.
, and
Gang
,
C.
,
2021
, “
Review on Bio-Inspired Flight Systems and Bionic Aerodynamics
,”
Chin. J. Aeronaut.
,
34
(
7
), pp.
170
186
.
7.
Han
,
J.-H.
,
Lee
,
J.-S.
, and
Kim
,
D.-K.
,
2009
, “
Bio-Inspired Flapping UAV Design: A University Perspective
,”
Proceedings of the 16th SPIE International Symposium on Smart Structures and Materials+NDE
,
San Diego, CA
,
Mar. 8–12
, Vol. 7295,pp. 466–477.
8.
Shyy
,
W.
,
Kang
,
C.-k.
,
Chirarattananon
,
P.
,
Ravi
,
S.
, and
Liu
,
H.
,
2016
, “
Aerodynamics, Sensing and Control of Insect-Scale Flapping-Wing Flight
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
472
(
2186
), p.
20150712
.
9.
Li
,
Q.
,
Ji
,
A.
,
Shen
,
H.
,
Li
,
R.
,
Liu
,
K.
,
Zheng
,
X.
,
Shen
,
L.
, and
Han
,
Q.
,
2022
, “
Experimental Study on the Wing Parameter Optimization of Flapping-Wing Aircraft Based on the Clap-and-Fling Mechanism
,”
Int. J. Aeronaut. Space Sci.
,
23
(
2
), pp.
265
276
.
10.
Hu
,
Y.
,
Ru
,
W.
,
Liu
,
Q.
, and
Wang
,
Z.
,
2022
, “
Design and Aerodynamic Analysis of Dragonfly-Like Flapping Wing Micro Air Vehicle
,”
J. Bionic Eng.
,
19
(
2
), pp.
1
12
.
11.
Jafferis
,
N. T.
,
Helbling
,
E. F.
,
Karpelson
,
M.
, and
Wood
,
R. J.
,
2019
, “
Untethered Flight of an Insect-Sized Flapping-Wing Microscale Aerial Vehicle
,”
Nature
,
570
(
7762
), pp.
491
495
.
12.
Nguyen
,
A. T.
,
Han
,
J.-S.
, and
Han
,
J.-H.
,
2016
, “
Effect of Body Aerodynamics on the Dynamic Flight Stability of the Hawkmoth Manduca Sexta
,”
Bioinspir. Biomim.
,
12
(
1
), p.
016007
.
13.
Han
,
J.-S.
, and
Han
,
J.-H.
,
2019
, “
A Contralateral Wing Stabilizes a Hovering Hawkmoth Under a Lateral Gust
,”
Sci. Rep.
,
9
(
1
), pp.
1
13
.
14.
Bhatia
,
M.
,
Patil
,
M.
,
Woolsey
,
C.
,
Stanford
,
B.
, and
Beran
,
P.
,
2014
, “
Stabilization of Flapping-Wing Micro-Air Vehicles in Gust Environments
,”
J. Guid. Control Dyn.
,
37
(
2
), pp.
592
607
.
15.
Yang
,
W.
,
Wang
,
L.
, and
Song
,
B.
,
2018
, “
Dove: A Biomimetic Flapping-Wing Micro Air Vehicle
,”
Int. J. Micro Air Veh.
,
10
(
1
), pp.
70
84
.
16.
Zufferey
,
R.
,
Tormo-Barbero
,
J.
,
Guzmán
,
M. M.
,
Maldonado
,
F. J.
,
Sanchez-Laulhe
,
E.
,
Grau
,
P.
,
Pérez
,
M.
,
Acosta
,
, and
Ollero
,
A.
,
2021
, “
Design of the High-Payload Flapping Wing Robot e-Flap
,”
IEEE Robot. Autom. Lett.
,
6
(
2
), pp.
3097
3104
.
17.
Folkertsma
,
G. A.
,
Straatman
,
W.
,
Nijenhuis
,
N.
,
Venner
,
C. H.
, and
Stramigioli
,
S.
,
2017
, “
Robird: A Robotic Bird of Prey
,”
IEEE Robot. Autom. Mag.
,
24
(
3
), pp.
22
29
.
18.
Leishman
,
G. J.
,
2006
,
Principles of Helicopter Aerodynamics
,
Cambridge University Press
,
Cambridge, UK
.
19.
Ellington
,
C. P.
,
1984
, “
The Aerodynamics of Hovering Insect Flight. IV. Aerodynamic Mechanisms
,”
Philos. Trans. R. Soc. B-Biol. Sci.
,
305
(
1122
), pp.
79
113
.
20.
Kang
,
C.-K.
,
Aono
,
H.
,
Cesnik
,
C. E.
, and
Shyy
,
W.
,
2011
, “
Effects of Flexibility on the Aerodynamic Performance of Flapping Wings
,”
J. Fluid Mech.
,
689
, pp.
32
74
.
21.
Wu
,
P.
,
Ifju
,
P.
, and
Stanford
,
B.
,
2010
, “
Flapping Wing Structural Deformation and Thrust Correlation Study With Flexible Membrane Wings
,”
AIAA J
,
48
(
9
), pp.
2111
2122
.
22.
Addo-Akoto
,
R.
,
Han
,
J.-S.
, and
Han
,
J.-H.
,
2021
, “
Roles of Wing Flexibility and Kinematics in Flapping Wing Aerodynamics
,”
J. Fluids Struct.
,
104
(
16
), p.
103317
.
23.
Kumar
,
D.
,
Goyal
,
T.
,
Kamle
,
S.
,
Mohite
,
P.
, and
Lau
,
E.
,
2021
, “
Realisation and Testing of Novel Fully Articulated Bird-Inspired Flapping Wings for Efficient and Agile UAVs
,”
Aeronaut. J.
,
125
(
1294
), pp.
2114
2148
.
24.
Nguyen
,
A. T.
, and
Han
,
J.-H.
,
2018
, “
Wing Flexibility Effects on the Flight Performance of an Insect-Like Flapping-Wing Micro-Air Vehicle
,”
Aerosp. Sci. Technol.
,
79
(
41
), pp.
468
481
.
25.
Kim
,
H.-Y.
,
Han
,
J.-S.
, and
Han
,
J.-H.
,
2019
, “
Aerodynamic Effects of Deviating Motion of Flapping Wings in Hovering Flight
,”
Bioinspir. Biomim.
,
14
(
2
), p.
026006
.
26.
Xue
,
D.
, and
Song
,
B.
,
2021
, “
Tuning the Deformation of Flapping Wing to Improve the Flight Efficiency of Dove FWMAV
,”
J. Aerosp. Eng.
,
34
(
6
), p.
04021069
.
27.
Send
,
W.
,
Fischer
,
M.
,
Jebens
,
K.
,
Mugrauer
,
R.
,
Nagarathinam
,
A.
, and
Scharstein
,
F.
,
2012
, “
Artificial Hinged-Wing Bird With Active Torsion and Partially Linear Kinematics
,”
Proceedings of the 28th Congress of International Council of Aeronautical Science.
,
Brisbane, Australia
,
Sept. 23–28
, pp.
1
10
.
28.
Yousaf
,
R.
,
Shahzad
,
A.
,
Qadri
,
M. M.
, and
Javed
,
A.
,
2021
, “
Recent Advancements in Flapping Mechanism and Wing Design of Micro Aerial Vehicles
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
235
(
19
), pp.
4425
4446
.
29.
Gerdes
,
J. W.
,
Gupta
,
S. K.
, and
Wilkerson
,
S. A.
,
2012
, “
A Review of Bird-Inspired Flapping Wing Miniature Air Vehicle Designs
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
021003
.
30.
Ryan
,
M.
, and
Su
,
H.-J.
,
2012
, “
Classification of Flapping Wing Mechanisms for Micro Air Vehicles
,”
Proceedings of the 36th Mechanisms and Robotics Conference
,
Chicago, IL
,
Aug. 12–15
, vol. 45035, pp.
105
115
.
31.
Wang
,
P. L.
, and
Michael McCarthy
,
J.
,
2018
, “
Design of a Flapping Wing Mechanism to Coordinate Both Wing Swing and Wing Pitch
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
025003
.
32.
Jang
,
J. H.
, and
Yang
,
G.-H.
,
2018
, “
Design of Wing Root Rotation Mechanism for Dragonfly-Inspired Micro Air Vehicle
,”
Appl Sci
,
8
(
10
), p.
1868
.
33.
Fenelon
,
M. A.
, and
Furukawa
,
T.
,
2010
, “
Design of an Active Flapping Wing Mechanism and a Micro Aerial Vehicle Using a Rotary Actuator
,”
Mech. Mach. Theory
,
45
(
2
), pp.
137
146
.
34.
Jiang
,
S.
,
Hu
,
Y.
,
Li
,
Q.
,
Ma
,
L.
,
Wang
,
Y.
,
Zhou
,
X.
, and
Liu
,
Q.
,
2021
, “
Design and Analysis of an Innovative Flapping Wing Micro Aerial Vehicle With a Figure Eight Wingtip Trajectory
,”
Mech. Sci.
,
12
(
1
), pp.
603
613
.
35.
Liu
,
Q.
,
Li
,
Q.
,
Zhou
,
X.
,
Xu
,
P.
,
Ren
,
L.
, and
Pan
,
S.
,
2019
, “
Development of a Novel Flapping Wing Micro Aerial Vehicle With Elliptical Wingtip Trajectory
,”
Mech. Sci.
,
10
(
2
), pp.
355
362
.
36.
Jianyang
,
Z.
,
Lin
,
J.
, and
Yu
,
H.
,
2018
, “
Aerodynamic Performance of the Three-Dimensional Lumped Flexibility Bionic Hovering Wing
,”
Int J. Aerosp. Eng.
,
2018
, pp.
1
14
.
37.
Chace
,
M. A.
,
1963
, “
Vector Analysis of Linkages
,”
ASME J. Manuf. Sci. Eng.
,
85
(
3
), pp.
289
297
.
38.
Wilson
,
C. E.
, and
Sadler
,
J. P.
,
2003
,
Kinematics and Dynamics of Machinery
, 3rd ed.,
Pearson Education
,
New York
.
39.
Lentink
,
D.
, and
Dickinson
,
M. H.
,
2009
, “
Biofluiddynamic Scaling of Flapping, Spinning and Translating Fins and Wings
,”
J. Exp. Biol.
,
212
(
16
), pp.
2691
2704
.
40.
Nguyen
,
A. T.
,
Kim
,
J.-K.
,
Han
,
J.-S.
, and
Han
,
J.-H.
,
2016
, “
Extended Unsteady Vortex-Lattice Method for Insect Flapping Wings
,”
J. Aircr.
,
53
(
6
), pp.
1709
1718
.
41.
MathWorks
. “
Find Minimum of Function Using Genetic Algorithm
,” https://kr.mathworks.com/help/gads/ga.html.
42.
Golberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addion Wesley
,
Boston, MA
.
You do not currently have access to this content.