Abstract

Reconfigurable robotic hands can constitute one of the future trends of dexterous manipulator design, as they can strike a balance between precision, force exertion, flexibility, and adaptability. However, the feasible manipulation workspace of a reconfigurable robotic hand, the metamorphic hand, is complex as the finger operation planes alter with the reconfigurable palm’s motions. Different useful workspace approaches and grasp quality metrics have been introduced, but a precision manipulation workspace (PMW) approach for reconfigurable robotic hands has yet to be presented. This paper presents a hand workspace taxonomy based on previous studies, and a new approach to obtaining a PMW of a robotic hand which satisfies three properties: force closure, singularity avoidance, and interference avoidance. A grasp quality metric, termed the minimum friction coefficient (MFC), is introduced to indicate the force-closure conditions of a robotic hand’s configurations. Unlike the previous grasp quality metrics targeting online grasp-planning tasks, this MFC-based measure focuses on the offline design of robotic hands. This method is essential for conducting grasp planning, design optimization, and actuation reduction for reconfigurable robotic hands. Further, the approach is applied to a three-fingered metamorphic hand, and the results are studied thoroughly.

References

1.
Okamura
,
A. M.
,
Smaby
,
N.
, and
Cutkosky
,
M. R.
,
2000
, “
An Overview of Dexterous Manipulation
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
San Francisco, CA
,
Apr. 24–28
, Vol. 1, pp.
255
262
.
2.
Dai
,
J. S.
, and
Jones
,
J. R.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
3.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2005
, “
Matrix Representation of Topological Changes in Metamorphic Mechanisms
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
837
840
.
4.
Dai
,
J. S.
, and
Wang
,
D.
,
2007
, “
Geometric Analysis and Synthesis of the Metamorphic Robotic Hand
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1191
1197
.
5.
Cervantes-Sánchez
,
J. J.
,
Hernández-Rodrı´guez
,
J. C.
, and
González-Galván
,
E. J.
,
2004
, “
On the 5R Spherical, Symmetric Manipulator: Workspace and Singularity Characterization
,”
Mech. Mach. Theory
,
39
(
4
), pp.
409
429
.
6.
Dai
,
J. S.
,
Wang
,
D.
, and
Cui
,
L.
,
2009
, “
Orientation and Workspace Analysis of the Multifingered Metamorphic Hand-Metahand
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
942
947
.
7.
Zhang
,
K.
, and
Dai
,
J. S.
,
2014
, “
A Kirigami-Inspired 8R Linkage and Its Evolved Overconstrained 6R Linkages With the Rotational Symmetry of Order Two
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021007
.
8.
Cui
,
L.
, and
Dai
,
J. S.
,
2011
, “
Posture, Workspace, and Manipulability of the Metamorphic Multifingered Hand With an Articulated Palm
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021001
.
9.
Emmanouil
,
E.
,
Wei
,
G.
, and
Dai
,
J. S.
,
2016
, “
Spherical Trigonometry Constrained Kinematics for a Dexterous Robotic Hand With an Articulated Palm
,”
Robotica
,
34
(
12
), pp.
2788
2805
.
10.
Cui
,
L.
, and
Dai
,
J. S.
,
2012
, “
Reciprocity-Based Singular Value Decomposition for Inverse Kinematic Analysis of the Metamorphic Multifingered Hand
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
034502
.
11.
Wei
,
G.
,
Sun
,
J.
,
Zhang
,
X.
,
Pensky
,
D.
,
Piater
,
J.
, and
Dai
,
J. S.
,
2015
, “
Metamorphic Hand Based Grasp Constraint and Affordance
,”
IDETC/CIE 2015
,
Boston, MA
,
Aug. 2–5
, pp.
3
12
.
12.
Cui
,
L.
, and
Dai
,
J. S.
,
2018
, “Rolling Contact in Kinematics of Multifingered Robotic Hands,”
Advances in Robot Kinematics 2016
, Vol.
4
,
J.
Lenarčič
and
J. P.
Merlet
, eds.,
Springer
,
Cham
, pp.
217
224
.
13.
An
,
W.
,
Wei
,
J.
,
Lu
,
X.
,
Dai
,
J. S.
, and
Li
,
Y.
,
2021
, “
Geometric Design-Based Dimensional Synthesis of a Novel Metamorphic Multi-Fingered Hand With Maximal Workspace
,”
Chin. J. Mech. Eng.
,
34
(
1
), pp.
1
15
.
14.
Borràs
,
J.
, and
Dollar
,
A. M.
,
2015
, “
Dimensional Synthesis of Three-Fingered Robot Hands for Maximal Precision Manipulation Workspace
,”
Int. J. Rob. Res.
,
34
(
14
), pp.
1731
1746
.
15.
Herrero
,
S.
,
Mannheim
,
T.
,
Prause
,
I.
,
Pinto
,
C.
,
Corves
,
B.
, and
Altuzarra
,
O.
,
2015
, “
Enhancing the Useful Workspace of a Reconfigurable Parallel Manipulator by Grasp Point Optimization
,”
Rob. Comput.-Integr. Manuf.
,
31
, pp.
51
60
.
16.
Lambert
,
P.
, and
Herder
,
J. L.
,
2019
, “
A 7-DOF Redundantly Actuated Parallel Haptic Device Combining 6-DOF Manipulation and 1-DOF Grasping
,”
Mech. Mach. Theory
,
134
, pp.
349
364
.
17.
Merlet
,
J.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.
18.
Roa
,
M. A.
,
Hertkorn
,
K.
,
Zacharias
,
F.
,
Borst
,
C.
, and
Hirzinger
,
G.
,
2011
, “
Graspability Map: A Tool for Evaluating Grasp Capabilities
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, pp.
1768
1774
.
19.
Roa
,
M. A.
, and
Suárez
,
R.
,
2015
, “
Grasp Quality Measures: Review and Performance
,”
Autonom. Rob.
,
38
(
1
), pp.
65
88
.
20.
Li
,
J. W.
,
Jin
,
M. H.
, and
Liu
,
H.
,
2003
, “
A New Algorithm for Three-Finger Force-Closure Grasp of Polygonal Objects
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Taipei, Taiwan
,
Sept. 14–19
, Vol. 2, pp.
1800
1804
.
21.
Liu
,
Y.-H.
,
1999
, “
Qualitative Test and Force Optimization of 3-D Frictional Form-Closure Grasps Using Linear Programming
,”
IEEE Trans. Rob. Autom.
,
15
(
1
), pp.
163
173
.
22.
Zheng
,
Y.
, and
Yamane
,
K.
,
2013
, “
Evaluation of Grasp Force Efficiency Considering Hand Configuration and Using Novel Generalized Penetration Distance Algorithm
,”
IEEE International Conference on Robotics and Automation (ICRA).
23.
Li
,
Y.
,
Yu
,
Y.
, and
Tsujio
,
S.
,
2002
, “
An Analytical Grasp Planning on Given Object With Multifingered Hand
,”
Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
,
Vol. 4
.
24.
Coelho
,
J. A.
, Jr.
, and
Grupen
,
R. A.
,
1997
, “
A Control Basis for Learning Multifingered Grasps
,”
J. Rob. Syst.
,
14
(
7
), pp.
545
557
.
25.
Klein
,
C. A.
, and
Blaho
,
B. E.
,
1987
, “
Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators
,”
Int. J. Rob. Res.
,
6
(
2
), pp.
72
83
.
26.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
.
27.
Sato
,
M.
, and
Yoshikawa
,
T.
,
2011
, “
A Grasp Performance Criterion for Robot Hands Considering Multiple Aspects of Tasks and Hand Configurations
,”
IEEE International Conference on Robotics and Biomimetics
,
Karon Beach, Thailand
,
Dec. 7–11
, pp.
1547
1554
.
28.
Cutkosky
,
M. R.
,
1989
, “
On Grasp Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks
,”
IEEE Trans. Rob. Autom.
,
5
(
3
), pp.
269
279
.
29.
Nguyen
,
V. D.
,
1988
, “
Constructing Force-Closure Grasps
,”
Int. J. Rob. Res.
,
7
(
3
), pp.
3
16
.
30.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
2017
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
31.
Mishra
,
B.
,
Schwartz
,
J. T.
, and
Sharir
,
M.
,
1987
, “
On the Existence and Synthesis of Multifinger Positive Grips
,”
Algorithmica
,
2
(
1
), pp.
541
558
.
32.
Liu
,
Y. H.
,
Lam
,
M. L.
, and
Ding
,
D.
,
2004
, “
A Complete and Efficient Algorithm for Searching 3-D Form-Closure Grasps in the Discrete Domain
,”
IEEE Trans. Rob.
,
20
(
5
), pp.
805
816
.
33.
Zheng
,
Y.
, and
Qian
,
W. H.
,
2006
, “
An Enhanced Ray-Shooting Approach to Force-Closure Problems
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
960
968
.
34.
Kockara
,
S.
,
Halic
,
T.
,
Iqbal
,
K.
,
Bayrak
,
C.
, and
Rowe
,
R.
,
2007
, “
Collision Detection: A Survey
,”
IEEE International Conference on Systems, Man and Cybernetics
,
Montreal, QC, Canada
,
Oct. 7–10
, pp.
4046
4051
.
35.
Pham
,
C. B.
,
Yeo
,
S. H.
,
Yang
,
G.
,
Kurbanhusen
,
M. S.
, and
Chen
,
I. M.
,
2006
, “
Force-Closure Workspace Analysis of Cable-Driven Parallel Mechanisms
,”
Mech. Mach. Theory
,
41
(
1
), pp.
53
69
.
36.
Kuo
,
L. C.
,
Chiu
,
H. Y.
,
Chang
,
C. W.
,
Hsu
,
H. Y.
, and
Sun
,
Y. N.
,
2009
, “
Functional Workspace for Precision Manipulation Between Thumb and Fingers in Normal Hands
,”
J. Electromyogr. Kinesiol.
,
19
(
5
), pp.
829
839
.
You do not currently have access to this content.