Abstract

This paper proposes a novel synthesis method for constructing plane–space switching mechanisms based on the symmetric plane of the regular prism. First, the structure equation and motion characteristic of plane-symmetric eight-bar linkage are presented. Then, the plane-symmetric seven-bar linkage and rhombic Bricard linkage are obtained by locking the joint of the eight-bar linkage. Four types of plane–space switching mechanisms are constructed based on the synthesis method and switching linkage units. These switching mechanisms can expand completely into planar configurations and fold completely into spatial configurations. Subsequently, the kinematics of the coupled branch chain is analyzed, through which the folded and contractive characteristics of the mechanism are revealed. Then, the concept of the distributed circle of joints is proposed, and the enveloping performance of the mechanism is approximately analyzed. This paper provides a new idea and synthesis method for designing new deployable mechanisms.

References

1.
Zhang
,
X.
,
Nie
,
R.
,
Chen
,
Y.
, and
He
,
B.
,
2021
, “
Deployable Structures: Structural Design and Static/Dynamic Analysis
,”
J. Elast.
,
146
(
2
), pp.
199
235
.
2.
Gosselin
,
C. M.
, and
Gagnon-Lachance
,
D.
,
2006
, “
Expandable Polyhedral Mechanisms Based on Polygonal One-Degree-of-Freedom Faces
,”
Proc. Inst. Mech. Eng. Part. C
,
220
(
7
), pp.
1011
1018
.
3.
Wang
,
R.
,
Sun
,
J.
, and
Dai
,
J. S.
,
2019
, “
Design Analysis and Type Synthesis of a Petal-Inspired Space Deployable-Foldable Mechanism
,”
Mech. Mach. Theory
,
141
, pp.
151
170
.
4.
Kim
,
T.-H.
,
Suh
,
J.-E.
, and
Han
,
J.-H.
,
2021
, “
Deployable Truss Structure With Flat-Form Storability Using Scissor-Like Elements
,”
Mech. Mach. Theory
,
159
, p.
104252
.
5.
Sun
,
X.
,
Li
,
R.
,
Xun
,
Z.
,
Kong
,
X.
, and
Yao
,
Y.-A.
,
2021
, “
A Multiple-Mode Mechanism Composed of Four Antiparallelogram Units and Four Revolute Joints
,”
Mech. Mach. Theory
,
155
, p.
104106
.
6.
Zhang
,
X.
, and
Chen
,
Y.
,
2018
, “
The Diamond Thick-Panel Origami and the Corresponding Mobile Assemblies of Plane-Symmetric Bricard Linkages
,”
Mech. Mach. Theory
,
130
, pp.
585
604
.
7.
Lyu
,
S.
,
Yao
,
P.
,
Xiao
,
H.
,
Zhang
,
W.
, and
Ding
,
X.
,
2022
, “
Approximating Cylinders With Bundle-Folding Plane-Symmetric Bricard Linkages
,”
Int. J. Mech.
,
221
(
2
), p.
107231
.
8.
Guo
,
H.
,
Song
,
X.
,
Li
,
L.
,
Deng
,
Z.
,
Liu
,
R.
, and
Geng
,
J.
,
2018
, “
Type Synthesis of Deployable Single-Loop Overconstrained Linkages Based on Bennett Linkages
,”
Mech. Mach. Theory
,
120
, pp.
1
29
.
9.
Song
,
X.
,
Deng
,
Z.
,
Guo
,
H.
,
Liu
,
R.
,
Li
,
L.
, and
Liu
,
R.
,
2017
, “
Networking of Bennett Linkages and Its Application on Deployable Parabolic Cylindrical Antenna
,”
Mech. Mach. Theory
,
109
, pp.
95
125
.
10.
Song
,
X.
,
Guo
,
H.
,
Liu
,
S.
,
Meng
,
F.
,
Chen
,
Q.
,
Liu
,
R.
, and
Deng
,
Z.
,
2019
, “
Cable-Truss Hybrid Double-Layer Deployable Mechanical Network Constructed of Bennett Linkages and Planar Symmetric Four-Bar Linkages
,”
Mech. Mach. Theory
,
133
, pp.
459
480
.
11.
Wang
,
J.
, and
Kong
,
X.
,
2018
, “
Deployable Mechanisms Constructed by Connecting Orthogonal Bricard Linkages, 8R or 10R Single-Loop Linkages Using S Joints
,”
Mech. Mach. Theory
,
120
, pp.
178
191
.
12.
Wang
,
J.
, and
Kong
,
X.
,
2018
, “
Deployable Polyhedron Mechanisms Constructed by Connecting Spatial Single-Loop Linkages of Different Types and/or in Different Sizes Using S Joints
,”
Mech. Mach. Theory
,
124
, pp.
211
225
.
13.
Shi
,
C.
,
Guo
,
H.
,
Zhang
,
S.
,
Liu
,
R.
, and
Deng
,
Z.
,
2021
, “
Configuration Synthesis of Linear Foldable Over-Constrained Deployable Unit Based on Screw Theory
,”
Mech. Mach. Theory
,
156
, p.
104163
.
14.
Huang
,
H.
,
Deng
,
Z.
, and
Li
,
B.
,
2012
, “
Mobile Assemblies of Large Deployable Mechanisms
,”
J. Space. Eng.
,
5
(
1
), pp.
1
14
.
15.
Han
,
B.
,
Xu
,
Y.
,
Yao
,
J.
,
Zheng
,
D.
,
Guo
,
L.
, and
Zhao
,
Y.
,
2020
, “
Type Synthesis of Deployable Mechanisms for Ring Truss Antenna Based on Constraint-Synthesis Method
,”
C. J. Aeronaut.
,
33
(
9
), pp.
2445
2460
.
16.
Wang
,
S.
,
Huang
,
H.
,
Jia
,
G.
,
Li
,
B.
,
Guo
,
H.
, and
Liu
,
R.
,
2022
, “
Design of a Novel Three-Limb Deployable Mechanism With Mobility Bifurcation
,”
Mech. Mach. Theory
,
172
, p.
104789
.
17.
Qi
,
X.
,
Huang
,
H.
,
Li
,
B.
, and
Deng
,
Z.
,
2016
, “
A Large Ring Deployable Mechanism for Space Satellite Antenna
,”
Aerosp. Sci
,
58
, pp.
498
510
.
18.
Huang
,
H.
,
Deng
,
Z.
,
Qi
,
X.
, and
Li
,
B.
,
2013
, “
Virtual Chain Approach for Mobility Analysis of Multiloop Deployable Mechanisms
,”
ASME J. Mech. Des
,
135
(
11
), p.
111002
.
19.
Qi
,
X.
,
Huang
,
H.
,
Miao
,
Z.
,
Li
,
B.
, and
Deng
,
Z.
,
2017
, “
Design and Mobility Analysis of Large Deployable Mechanisms Based on Plane-Symmetric Bricard Linkage
,”
ASME J. Mech. Des
,
139
(
2
), p.
022302
.
20.
Feng
,
C. M.
, and
Liu
,
T. S.
,
2013
, “
A Graph-Theory Approach to Designing Deployable Mechanism of Reflector Antenna
,”
Acta. Astronaut
,
87
, pp.
40
47
.
21.
Feng
,
C. M.
, and
Liu
,
T. S.
,
2014
, “
A Bionic Approach to Mathematical Modeling the Fold Geometry of Deployable Reflector Antennas on Satellites
,”
Acta. Astronaut
,
103
, pp.
36
44
.
22.
Chen
,
Y.
, and
You
,
Z.
,
2008
, “
An Extended Myard Linkage and Its Derived 6R Linkage
.”
23.
Hasanzade
,
V.
,
Sedighy
,
S. H.
, and
Shahravi
,
M.
,
2017
, “
Compact Deployable Umbrella Antenna Design With Optimum Communication Properties
,”
J. Space. Rockets
,
54
(
3
), pp.
782
788
.
24.
Cao
,
W.-A.
,
Yang
,
D.
, and
Ding
,
H.
,
2017
, “
A New Family of Deployable Mechanisms Derived From Two-Layer and Two-Loop Spatial Linkages With Five Revolute Pair Coupling Chains
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061016
.
25.
Cao
,
W.-A.
,
Yang
,
D.
, and
Ding
,
H.
,
2018
, “
Topological Structural Design of Umbrella-Shaped Deployable Mechanisms Based on New Spatial Closed-Loop Linkage Units
,”
ASME J. Mech. Des
,
140
(
6
), p.
062302
.
26.
Cao
,
W.-A.
,
Jing
,
Z.
, and
Ding
,
H.
,
2020
, “
A General Method for Kinematics Analysis of Two-Layer and Two-Loop Deployable Linkages With Coupling Chains
,”
Mech. Mach. Theory
,
152
, p.
103945
.
27.
Li
,
R.
,
Yao
,
Y.-A.
, and
Ding
,
X.
,
2018
, “
A Family of Reconfigurable Deployable Polyhedral Mechanisms Based on Semiregular and Johnson Polyhedra
,”
Mech. Mach. Theory
,
126
, pp.
344
358
.
28.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
A Spatial Eight-Bar Linkage and Its Association With the Deployable Platonic Mechanisms
,”
ASME J. Mech. Rob
,
6
(
2
), p.
021010
.
29.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des
,
136
(
9
), p.
091003
.
30.
Ding
,
X.
,
Yang
,
Y.
, and
Dai
,
J. S.
,
2013
, “
Design and Kinematic Analysis of a Novel Prism Deployable Mechanism
,”
Mech. Mach. Theory
,
63
, pp.
35
49
.
31.
Xiu
,
H.
,
Wang
,
K.
,
Xu
,
T.
,
Wei
,
G.
, and
Ren
,
L.
,
2019
, “
Synthesis and Analysis of Fulleroid-Like Deployable Archimedean Mechanisms Based on an Overconstrained Eight-Bar Linkage
,”
Mech. Mach. Theory
,
137
, pp.
476
508
.
32.
Liu
,
J.
,
Zhao
,
X.
, and
Ding
,
H.
,
2020
, “
A Class of N-Sided Antiprism Deployable Polyhedral Mechanisms Based on an Asymmetric Eight-Bar Linkage
,”
Mech. Mach. Theory
,
150
, p.
103882
.
33.
Teoh
,
Z. E.
,
Phillips
,
B. T.
,
Becker
,
K. P.
,
Whittredge
,
G.
,
Weaver
,
J. C.
,
Hoberman
,
C.
,
Gruber
,
D. F.
, and
Wood
,
R. J.
,
2018
, “
Rotary-Actuated Folding Polyhedrons for Midwater Investigation of Delicate Marine Organisms
,”
Science Robotics
,
3
(
20
), p.
eaat5276
.
34.
Wang
,
R.
,
Liao
,
Y.
,
Dai
,
J. S.
,
Chen
,
H.
, and
Cai
,
G.
,
2019
, “
The Isomorphic Design and Analysis of a Novel Plane-Space Polyhedral Metamorphic Mechanism
,”
Mech. Mach. Theory
,
131
, pp.
152
171
.
35.
Crane
,
C. D.
, III
, and
Duffy
,
J.
,
1998
,
Kinematic Analysis of Robot Manipulators
,
Cambridge University Press
,
New York
.
36.
Perez
,
A.
, and
McCarthy
,
J. M.
,
2005
, “
Geometric Design of RRP, RPR and PRR Serial Chains
,”
Mech. Mach. Theory
,
40
(
11
), pp.
1294
1311
.
37.
Wang
,
J.
,
Bai
,
G.
, and
Kong
,
X.
,
2017
, “
Single-Loop Foldable 8R Mechanisms with Multiple Modes
,”
Mech and Mach Science
,
43
, pp.
503
510
.
38.
Wang
,
R.
,
Song
,
Y.
, and
Dai
,
J. S.
,
2021
, “
Reconfigurability of the Origami-Inspired Integrated 8R Kinematotropic Metamorphic Mechanism and Its Evolved 6R and 4R Mechanisms
,”
Mech. Mach. Theory
,
161
, p.
104245
.
39.
Pfurner
,
M.
,
2018
, “
Synthesis and Motion Analysis of a Single-Loop 8R-Chain
,”
Proceedings of 2018 International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, The Netherlands
,
June 20–22
, IEEE, pp.
1
7
.
40.
Tang
,
Z.
, and
Dai
,
J. S.
,
2018
, “
Bifurcated Configurations and Their Variations of an 8-Bar Linkage Derived From an 8-Kaleidocycle
,”
Mech. Mach. Theory
,
121
, pp.
745
754
.
41.
Chen
,
Y.
, and
Chai
,
W. H.
,
2011
, “
Bifurcation of a Special Line and Plane Symmetric Bricard Linkage
,”
Mech. Mach. Theory
,
46
(
4
), pp.
515
533
.
You do not currently have access to this content.