Abstract

In this paper, a novel Selective Compliance Assembly Robot Arm (SCARA) high-speed parallel manipulator that can realize three-translation and one-rotation motion is proposed, and an accurate dynamic modeling methodology is investigated. The mechanism is composed of four limbs with a double parallelogram structure and a single moving platform. The high bearing capacity and high dynamic response of the novel mechanism make it a viable alternative choice for this kind of automation equipment. The degree-of-freedom (DOF) of the mechanism is analyzed by the screw theory. At the same time, the velocity mapping model of the mechanism is established by the twist screw and the actuated Jacobian matrix. Then, the acceleration mapping model of the mechanism, including the generalized kinematic pairs, is established by reduced acceleration state, the modified Lie screw, and the acceleration Hessian matrix. On this basis, the complete dynamic model with a compact form of the mechanism is deduced by the combination of screw theory and virtual work principle, and the correctness of the developed model is verified by multibody simulation software. Finally, considering the inertial characteristics of the mechanism, the dynamic performance distribution in the reachable workspace of the mechanism is analyzed by the Joint-Reflected Inertia (JRI) index and Coefficient of Variation of joint-space Inertia (CVI) index, and some areas are selected as the task workspace using the above index to guarantee good dynamic performance.

References

1.
Stewart
,
D.
,
1966
, “
A Platform With 6 Degrees of Freedom
,”
Proc. Inst. Mech. Eng.
,
180
(
1
), pp.
371
386
.
2.
Olazagoitia
,
J. L.
, and
Wyatt
,
S.
,
2007
, “
New PKM Tricept T9000 and Its Application to Flexible Manufacturing at Aerospace Industry
,”
SAE Tech. Pap.
,
2142
, pp.
37
48
.
3.
Pierrot
,
F.
,
Reynaud
,
C.
, and
Fournier
,
A.
,
1990
, “
DELTA: A Simple and Efficient Parallel Robot
,”
Robotica
,
8
(
2
), pp.
105
109
.
4.
Clavel
,
R
.,
1990
, “
Device for the Movement and Positioning of an Element in Space: USA
,” U.S. Patent No. 4,976,582.
5.
Pierrot
,
F.
,
Nabat
,
V.
,
Company
,
O.
,
Krut
,
S.
, and
Poignet
,
P.
,
2009
, “
Optimal Design of a 4-DOF Parallel Manipulator: From Academia to Industry
,”
IEEE Trans. Rob.
,
25
(
2
), pp.
213
224
.
6.
Huang
,
T.
,
Liu
,
S.
,
Mei
,
J.
, and
Chetwynd
,
D. G.
,
2013
, “
Optimal Design of a 2-DOF Pick-and-Place Parallel Robot Using Dynamic Performance Indices and Angular Constraints
,”
Mech. Mach. Theory
,
70
, pp.
246
253
.
7.
Nabat
,
V.
,
de la O Rodriguez
,
M.
,
Company
,
O.
,
Krut
,
S.
, and
Pierrot
,
F.
,
2005
, “
Par4: Very High Speed Parallel Robot for Pick-and-Place
,”
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Edmonton, AB, Canada
,
Aug. 2–6
,
IEEE
, pp.
553
558
.
8.
Krut
,
S.
,
Company
,
O.
,
Nabat
,
V.
, and
Pierrot
,
F.
,
2006
, “
Heli4: A Parallel Robot for Scara Motions With a Very Compact Traveling Plate and a Symmetrical Design
,”
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
,
IEEE
, pp.
1656
1661
.
9.
Liu
,
S.
,
Huang
,
T.
,
Mei
,
J.
,
Zhao
,
X.
,
Wang
,
P.
, and
Chetwynd
,
D. G.
,
2012
, “
Optimal Design of a 4-DOF SCARA Type Parallel Robot Using Dynamic Performance Indices and Angular Constraints
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
031005
.
10.
Wu
,
G.
,
Lin
,
Z.
,
Zhao
,
W.
,
Zhang
,
S.
,
Shen
,
H.
, and
Caro
,
S.
,
2020
, “
A Four-Limb Parallel Schönflies Motion Generator With Full-Circle End-Effector Rotation
,”
Mech. Mach. Theory
,
146
, p.
103711
.
11.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2004
, “
Type Synthesis of 3T1R 4-DOF Parallel Manipulators Based on Screw Theory
,”
IEEE Trans. Rob. Autom.
,
20
(
2
), pp.
181
190
.
12.
Xie
,
F.
, and
Liu
,
X. J.
,
2015
, “
Design and Development of a High-Speed and High-Rotation Robot With Four Identical Arms and a Single Platform
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041015
.
13.
Xie
,
F.
, and
Liu
,
X.-J.
,
2016
, “
Analysis of the Kinematic Characteristics of a High-Speed Parallel Robot With Schönflies Motion: Mobility, Kinematics, and Singularity
,”
Front. Mech. Eng.
,
11
(
2
), pp.
135
143
.
14.
Zhang
,
H.
, and
Wang
,
M.
,
2022
, “
Dynamic Dimension Synthesis of 4-RR(SS)2 High Speed Parallel Robot
,”
Chin. J. Mech. Eng.
,
58
(
1
), pp.
29
40
(in Chinese).
15.
Zhang
,
X.
,
Mu
,
D.
,
Liu
,
Y.
,
Bi
,
J.
, and
Wang
,
H.
,
2019
, “
Type Synthesis and Kinematics Analysis of a Family of Three Translational and one Rotational Pick-and-Place Parallel Mechanisms With High Rotational Capability
,”
Adv. Mech. Eng.
,
11
(
6
), p.
1687814019853076
.
16.
Wang
,
Z.
,
Zhang
,
N.
,
Chai
,
X.
, and
Li
,
Q.
,
2017
, “
Kinematic/Dynamic Analysis and Optimization of a 2-URR-RRU Parallel Manipulator
,”
Nonlinear Dyn.
,
88
(1), pp.
503
519
.
17.
Yang
,
X.
,
Zhao
,
Z.
,
Xiong
,
H.
,
Li
,
Q.
, and
Lou
,
Y.
,
2021
, “
Kinematic Analysis and Optimal Design of a Novel Schönflies-Motion Parallel Manipulator With Rotational Pitch Motion for Assembly Operations
,”
ASME J. Mech. Rob.
,
13
(
4
), p. 040910.
18.
Lu
,
Y.
, and
Hu
,
B.
,
2007
, “
Analyzing Kinematics and Solving Active/Constrained Forces of a 3SPU + UPR Parallel Manipulator
,”
Mech. Mach. Theory
,
42
(
10
), pp.
1298
1313
.
19.
Lu
,
Y.
, and
Hu
,
B.
,
2008
, “
Unification and Simplification of Velocity/Acceleration of Limited-DOF Parallel Manipulators With Linear Active Legs
,”
Mech. Mach. Theory
,
43
(
9
), pp.
1112
1128
.
20.
Müller
,
A.
,
2018
, “
Screw and Lie Group Theory in Multibody Kinematics: Motion Representation and Recursive Kinematics of Tree-Topology Systems
,”
Multibody Syst. Dyn.
,
43
(
1
), pp.
37
70
.
21.
Müller
,
A.
,
2018
, “
Screw and Lie Group Theory in Multibody Dynamics: Recursive Algorithms and Equations of Motion of Tree-Topology Systems
,”
Multibody Syst. Dyn.
,
42
(
2
), pp.
219
248
.
22.
Martínez
,
J. R.
, and
Duffy
,
J.
,
1996
, “
An Application of Screw Algebra to the Acceleration Analysis of Serial Chains
,”
Mech. Mach. Theory
,
31
(
4
), pp.
445
457
.
23.
Gallardo-Alvarado
,
J.
,
Rico-Martínez
,
J. M.
, and
Alici
,
G.
,
2006
, “
Kinematics and Singularity Analyses of a 4-DOF Parallel Manipulator Using Screw Theory
,”
Mech. Mach. Theory
,
41
(
9
), pp.
1048
1061
.
24.
Gallardo-Alvarado
,
J.
,
Ramírez-Agundis
,
A.
,
Rojas-Garduño
,
H.
, and
Arroyo-Ramírez
,
B.
,
2010
, “
Kinematics of an Asymmetrical Three-Legged Parallel Manipulator by Means of the Screw Theory
,”
Mech. Mach. Theory
,
45
(
7
), pp.
1013
1023
.
25.
Huang
,
T.
,
Liu
,
H. T.
, and
Chetwynd
,
D. G.
,
2011
, “
Generalized Jacobian Analysis of Lower Mobility Manipulators
,”
Mech. Mach. Theory
,
46
(
6
), pp.
831
844
.
26.
Joshi
,
S. A.
, and
Tsai
,
L. W.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
254
258
.
27.
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2011
, “
An Approach for Acceleration Analysis of Lower Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011013
.
28.
Chai
,
X.
,
Wang
,
M.
,
Xu
,
L.
, and
Ye
,
W.
,
2020
, “
Dynamic Modeling and Analysis of a 2PRU-UPR Parallel Robot Based on Screw Theory
,”
IEEE Access
,
8
, pp.
78868
78878
.
29.
Rao
,
C.
,
Xu
,
L.
,
Chen
,
Q.
, and
Ye
,
W.
,
2021
, “
Dynamic Modeling and Performance Evaluation of a 2UPR-PRU Parallel Kinematic Machine Based on Screw Theory
,”
J. Mech. Sci. Technol.
,
35
(
6
), pp.
2369
2381
.
30.
Gallardo-Alvarado
,
J.
,
2020
, “
A Gough–Stewart Parallel Manipulator With Configurable Platform and Multiple End-Effectors
,”
Meccanica
,
55
(
3
), pp.
597
613
.
31.
Carbonari
,
L.
,
Battistelli
,
M.
,
Callegari
,
M.
, and
Palpacelli
,
M. C.
,
2013
, “
Dynamic Modelling of a 3-CPU Parallel Robot via Screw Theory
,”
Mech. Sci.
,
4
(
1
), pp.
185
197
.
32.
Gallardo-Alvarado
,
J.
,
Rodríguez-Castro
,
R.
, and
Delossantos-Lara
,
P. J.
,
2018
, “
Kinematics and Dynamics of a 4-PRUR Schönflies Parallel Manipulator by Means of Screw Theory and the Principle of Virtual Work
,”
Mech. Mach. Theory
,
122
, pp.
347
360
.
33.
Zou
,
Q.
,
Zhang
,
D.
, and
Huang
,
G.
,
2022
, “
Dynamic Performance Evaluation of the Parallel Mechanism for a 3T2R Hybrid Robot
,”
Mech. Mach. Theory
,
172
, p.
104794
.
34.
Nabavi
,
A.
,
2019
, “
Closed-Form Dynamic Formulation of a General 6-P US Robot
,”
J. Intell. Rob. Syst.
,
96
(
3–4
), pp.
317
330
.
35.
Enferadi
,
J.
, and
Jafari
,
K.
,
2020
, “
A Kane's Based Algorithm for Closed-Form Dynamic Analysis of a New Design of a 3RSS-S Spherical Parallel Manipulator
,”
Multibody Syst. Dyn.
,
49
(
1
), pp.
377
394
.
36.
Hou
,
Y.
,
Zhang
,
G.
, and
Zeng
,
D.
,
2020
, “
An Efficient Method for the Dynamic Modeling and Analysis of Stewart Parallel Manipulator Based on the Screw Theory
.”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
234
(
3
), pp.
808
821
.
37.
Zhao
,
J. S.
,
Wei
,
S. T.
, and
Sun
,
X. C.
,
2023
, “
Dynamics of a 3-UPS-UPU-S Parallel Mechanism
,”
Appl. Sci.
,
13
(
6
), p.
3912
.
38.
Park
,
F. C.
, and
Kim
,
M. W.
,
2000
, “
Lie Theory, Riemannian Geometry, and the Dynamics of Coupled Rigid Bodies
,”
Z. Angew. Math. Phys.
,
51
(
5
), pp.
820
834
.
39.
Mueller
,
A.
,
2022
, “
Dynamics of Parallel Manipulators With Hybrid Complex Limbs—Modular Modeling and Parallel Computing
,”
Mech. Mach. Theory
,
167
, p.
104549
.
40.
Müller
,
A.
,
2022
, “
A Constraint Embedding Approach for Dynamics Modeling of Parallel Kinematic Manipulators With Hybrid Limbs
,”
Rob. Auton. Syst.
,
155
, p.
104187
.
41.
Gallardo
,
J.
,
Rico
,
J. M.
,
Frisoli
,
A.
,
Checcacci
,
D.
, and
Bergamasco
,
M.
,
2003
, “
Dynamics of Parallel Manipulators by Means of Screw Theory
,”
Mech. Mach. Theory
,
38
(
11
), pp.
1113
1131
.
42.
Asada
,
H.
,
1983
, “
A Geometrical Representation of Manipulator Dynamics and Its Application to Arm Design
.”
43.
Yoshikawa
,
T.
,
1985
, “
Dynamic Manipulability of Robot Manipulators
,”
1985 IEEE International Conference on Robotics and Automation
,
St. Louis, MO
,
Mar. 25–28
, Vol.
2
,
IEEE
, pp.
1033
1038
.
44.
Corbel
,
D.
,
Gouttefarde
,
M.
,
Company
,
O.
, and
Pierrot
,
F.
,
2010
, “
Actuation Redundancy as a Way to Improve the Acceleration Capabilities of 3T and 3T1R Pick-and-Place Parallel Manipulators
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041002
.
45.
Bowling
,
A.
, and
Khatib
,
O.
,
2005
, “
The Dynamic Capability Equations: A New Tool for Analyzing Robotic Manipulator Performance
,”
IEEE Trans. Rob.
,
21
(
1
), pp.
115
123
.
46.
Wu
,
J.
,
Ying
,
G.
,
Zhang
,
B.
, and
Wang
,
L.
,
2017
, “
Workspace and Dynamic Performance Evaluation of the Parallel Manipulators in a Spray-Painting Equipment
,”
Rob. Comput. Integr. Manuf.
,
44
(
Apr.
), pp.
199
207
.
47.
Mo
,
J.
,
Shao
,
Z. F.
,
Guan
,
L.
,
Xie
,
F.
, and
Tang
,
X.
,
2017
, “
Dynamic Performance Analysis of the x4 High-Speed Pick-and-Place Parallel Robot
,”
Rob. Comput. Integr. Manuf.
,
46
, pp.
48
57
.
48.
Shao
,
Z. F.
,
Tang
,
X.
,
Chen
,
X.
, and
Wang
,
L. P.
,
2012
, “
Research on the Inertia Matching of the Stewart Parallel Manipulator
,”
Rob. Comput. Integr. Manuf.
,
28
(
6
), pp.
649
659
.
You do not currently have access to this content.