Abstract

The implementation of the high-precision tracking control and external force-sensing ability of a manipulator is important for achieving refined surgical robot operation. In this paper, a hybrid method based on data-driven and model-based algorithms is proposed for the manipulator of a cable-pulley-driven surgical robot. This method integrates an artificial neural network and a dynamic model rotation angle estimation, and a full closed-loop control architecture is further constructed. The algorithm compensates for the hysteresis of the joint angle and effectively improves the tracking control precision. Based on the architecture, the external force estimator (EFE) using a joint torque disturbance observer and the force interaction teleoperation control strategy using a direct force feedback framework (DFF) are implemented. In the force loading experiment, it was shown that the EFE performs well for static and dynamic force estimation, and the teleoperated haptic control experiment showed that the DFF-EFE-based system has a high position-tracking accuracy with real-time external force-sensing ability.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Dong
,
X.
,
Wang
,
M.
,
Mohammad
,
A.
,
Ba
,
W.
,
Russo
,
M.
,
Norton
,
A.
,
Kell
,
J.
, and
Axinte
,
D.
,
2022
, “
Continuum Robots Collaborate for Safe Manipulation of High-Temperature Flame to Enable Repairs in Challenging Environments
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
4217
4220
.
2.
Wang
,
M.
,
Dong
,
X.
,
Ba
,
W.
,
Mohammad
,
A.
,
Axinte
,
D.
, and
Norton
,
A.
,
2021
, “
Design, Modelling and Validation of a Novel Extra Slender Continuum Robot for In-Situ Inspection and Repair in Aeroengine
,”
Rob. Comput. Integr. Manuf.
,
67
, p.
102054
.
3.
Mohammad
,
A.
,
Russo
,
M.
,
Fang
,
Y.
,
Dong
,
X.
,
Axinte
,
D.
, and
Kell
,
J.
,
2021
, “
An Efficient Follow-The-Leader Strategy for Continuum Robot Navigation and Coiling
,”
IEEE Robot. Autom. Mag.
,
6
(
4
), pp.
7493
7500
.
4.
Sitler
,
J. L.
, and
Wang
,
L.
,
2022
, “
A Modular Open-Source Continuum Manipulator for Underwater Remotely Operated Vehicles
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060906
.
5.
Dupont
,
P. E.
,
Nelson
,
B. J.
,
Goldfarb
,
M.
,
Hannaford
,
B.
,
Menciassi
,
A.
,
O’Malley
,
M. K.
,
Simaan
,
N.
,
Valdastri
,
P.
, and
Yang
,
G. Z.
,
2021
, “
A Decade Retrospective of Medical Robotics Research From 2010 To 2020
,”
Sci. Rob.
,
6
(
60
), p.
eabi8017
.
6.
Wang
,
Z.
,
Bao
,
S.
,
Wang
,
D.
,
Qian
,
S.
,
Zhang
,
J.
, and
Hai
,
M.
,
2023
, “
Design of a Novel Flexible Robotic Laparoscope Using a Two Degrees-of-Freedom Cable-Driven Continuum Mechanism With Major Arc Notches
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
064502
.
7.
Ju
,
R.
,
Zhang
,
D.
,
Xu
,
J.
,
Yuan
,
H.
,
Miao
,
Z.
,
Zhou
,
M.
, and
Cao
,
Z.
,
2022
, “
Design, Modeling, and Kinematics Analysis of a Modular Cable-Driven Manipulator
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060903
.
8.
Guo
,
Y.
,
Pan
,
B.
,
Sun
,
Y.
,
Niu
,
G.
,
Fu
,
Y.
, and
Meng
,
M. Q. H.
,
2023
, “
Motion Hysteresis Compensation Based on Motor Current Segmentation for Elongated Cable-Driven Surgical Instruments
,”
IEEE Trans. Autom. Sci. Eng.
,
21
(
1
), pp.
721
732
.
9.
Xue
,
R.
,
Ren
,
B.
,
Yan
,
Z.
, and
Du
,
Z.
,
2017
, “
A Cable-Pulley System Modeling Based Position Compensation Control for a Laparoscope Surgical Robot
,”
Mech. Mach. Theory
,
118
, pp.
283
299
.
10.
Wang
,
W.
,
Wang
,
J.
,
Chen
,
C.
,
Luo
,
Y.
,
Wang
,
X.
, and
Yu
,
L.
,
2024
, “
Design of Position Estimator for Rope Driven Micromanipulator of Surgical Robot Based on Parameter Autonomous Selection Model
,”
ASME J. Mech. Rob.
,
16
(
4
), p.
041005
.
11.
Patel
,
R. V.
,
Atashzar
,
S. F.
, and
Tavakoli
,
M.
,
2022
, “
Haptic Feedback and Force-Based Teleoperation in Surgical Robotics
,”
Proc. IEEE
,
110
(
7
), pp.
1012
1027
.
12.
Yan
,
Y.
,
Yu
,
L.
,
Li
,
C.
,
Gu
,
X.
, and
Ren
,
H.
,
2020
, “
UKF-Based Motion Estimation of Cable-Driven Forceps for Robot-Assisted Surgical System
,”
IEEE Access
,
8
, pp.
94912
94922
.
13.
Wang
,
Z.
,
Liu
,
G.
,
Qian
,
S.
,
Wang
,
D.
,
Wei
,
X.
, and
Yu
,
X.
,
2023
, “
Tracking Control With External Force Self-Sensing Ability Based on Position/Force Estimators and Non-Linear Hysteresis Compensation for a Backdrivable Cable-Pulley-Driven Surgical Robotic Manipulator
,”
Mech. Mach. Theory
,
183
, p.
105259
.
14.
Liang
,
Y.
,
Du
,
Z.
,
Wang
,
W.
, and
Sun
,
L.
,
2017
, “
A Novel Position Compensation Scheme for Cable-Pulley Mechanisms Used in Laparoscopic Surgical Robots
,”
Sensors
,
17
(
10
), p.
2257
.
15.
Baek
,
D.
,
Seo
,
J. H.
,
Kim
,
J.
, and
Kwon
,
D. S.
,
2020
, “
Hysteresis Compensator With Learning-Based Hybrid Joint Angle Estimation for Flexible Surgery Robots
,”
IEEE Robot. Autom. Lett.
,
5
(
4
), pp.
6837
6844
.
16.
Baek
,
D.
,
Nho
,
Y. H.
, and
Kwon
,
D. S.
,
2022
, “
Vio-Com: Feed-Forward Compensation Using Vision-Based Optimization for High-Precision Surgical Manipulation
,”
IEEE Robot. Autom. Lett.
,
7
(
1
), pp.
263
270
.
17.
Francis
,
C.
,
Sato
,
T.
,
Okuyama
,
T.
, and
Tanaka
,
M.
,
2022
, “
A Cable Driven Robotic Palpation System With Contact Force Sensing Based on Cable Tension Observation
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
18
(
6
), p.
e2435
.
18.
Guo
,
Y.
,
Pan
,
B.
,
Fu
,
Y.
, and
Meng
,
M. Q. H.
,
2021
, “
CAM-Foc: A High Accuracy Lightweight Deep Neural Network for Grip Force Measurement of Elongated Surgical Instrument
,”
IEEE Trans. Instrum. Meas.
,
70
, pp.
1
12
.
19.
Wang
,
Z.
,
Wang
,
D.
,
Chen
,
B.
,
Yu
,
L.
,
Qian
,
J.
, and
Zi
,
B.
,
2019
, “
A Clamping Force Estimation Method Based on a Joint Torque Disturbance Observer Using PSO-BPNN for Cable-Driven Surgical Robot End-Effectors
,”
Sensors
,
19
(
23
), p.
5291
.
20.
Lai
,
W.
,
Cao
,
L.
,
Liu
,
J.
,
Tjin
,
S. C.
, and
Phee
,
S. J.
,
2022
, “
A Three-Axial Force Sensor Based on Fiber Bragg Gratings for Surgical Robots
,”
IEEE/ASME Trans. Mechatron.
,
27
(
2
), pp.
777
789
.
21.
Li
,
J.
,
Wang
,
C.
,
Mao
,
Z.
,
Liu
,
Y.
,
Wang
,
Z.
, and
Liu
,
H.
,
2022
, “
A Compact FBG-Based Triaxial Force Sensor With Parallel Helical Beams for Robotic-Assisted Surgery
,”
IEEE Trans. Instrum. Meas.
,
71
, pp.
1
9
.
22.
Saini
,
S.
,
Orlando
,
M. F.
, and
Pathak
,
P. M.
,
2022
, “
Adaptive Control of a Master-Slave Based Robotic Surgical System With Haptic Feedback
,”
IEEE Trans. Autom. Sci. Eng.
,
20
(
2
), pp.
1125
1138
.
23.
Park
,
S.
,
Jang
,
N.
,
Ihn
,
Y. S.
,
Yang
,
S.
,
Jeong
,
J.
,
Oh
,
S. R.
,
Kim
,
K.
, and
Hwang
,
D.
,
2020
, “
A Tele-Operated Microsurgical Forceps-Driver With a Variable Stiffness Haptic Feedback Master Device
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
1946
1953
.
24.
Wang
,
Z.
,
Zi
,
B.
,
Wang
,
D.
, and
Qian
,
J.
,
2019
, “
Design, Modeling and Analysis of a Novel Backdrivable Cable-Driven Series Elastic Actuator
,”
Proceedings of the 2019 IEEE 19th International Conference on Nanotechnology
,
Macao, China
,
July 22–26
, pp.
179
183
.
25.
Yu
,
X.
,
Liu
,
G.
,
Wang
,
Z.
, and
Zi
,
B.
,
2022
, “
Full-Closed Loop Tracking Control Based on Multi-Factor Coupling Compensations Using Artificial Neural Network for a Cable-Pulley-Driven Surgical Robotic Manipulator
,”
Proceedings of the 2022 USCToMM Symposium on Mechanical Systems and Robotics
,
Rapid City
,
May 19–21
, pp.
43
53
.
26.
Wang
,
Z.
,
Zi
,
B.
,
Wang
,
D.
,
Qian
,
J.
,
You
,
W.
, and
Yu
,
L.
,
2019
, “
External Force Self-Sensing Based on Cable-Tension Disturbance Observer for Surgical Robot End-Effector
,”
IEEE Sens. J.
,
19
(
13
), pp.
5274
5284
.
27.
Okamura
,
A. M.
,
Verner
,
L. N.
,
Yamamoto
,
T.
, and
Gwilliam
,
J. C.
, and
Griffiths
,
P. G.
,
2011
, “
Force Feedback and Sensory Substitution for Robot-Assisted Surgery
,”
Surg. Rob.
, pp.
419
448
.
You do not currently have access to this content.