Abstract

The traditional four-bar mechanism is renowned for its simple structure, dependable performance, and wide range of applications. The single-degree-of-freedom (DOF) four-bar multi-mode planar mechanism (MMPM) is a type of four-bar mechanism that not only has the structural characteristics of the traditional four-bar mechanisms but also can achieve multiple motion modes by changing its structure. It has the advantage of performing diverse functions while conserving resources, which opens up new possibilities for research and application of the four-bar mechanism. However, due to the lack of a systematic configuration construction method, the design and application of single-DOF four-bar MMPMs are seriously limited. This paper presents a systematic method to construct a set of single-DOF four-bar MMPMs based on the loop equations and the proposed multi-mode modules (MMMs). First, depending on the loop equations, the four-bar planar mechanism containing two branches is identified by the corresponding branch graphs. Then, three kinds of MMMs are systematically proposed for the first time, helping the identified mechanism realize multiple motion modes. Subsequently, single-DOF four-bar MMPMs are constructed by replacing the specific component of the planar mechanism with the MMMs. Furthermore, the replacement rules of MMMs and the corresponding construction steps are summarized. Finally, 14 kinds of single-DOF four-bar MMPMs are listed, and the corresponding multi-mode motion analysis is discussed at the end of this paper. The proposed method is a straightforward one, which will provide great convenience for the configuration design of single-DOF four-bar MMPMs and promote the development and application of MMPMs.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Khan
,
S.
,
Jamal
,
A.
,
Ali
,
S.
,
Horoub
,
M. M.
,
Albalasie
,
A.
, and
Ali
,
S.
,
2020
, “
Dynamic Modeling and Analysis of a Four-Bar Mechanism for Automobile Applications
,”
2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)
,
Istanbul, Turkey
,
June 12–13
, pp.
1
6
.
2.
Hroncová
,
D.
,
Delyová
,
I.
,
Frankovský
,
P.
, and
Puzderová
,
A.
,
2013
, “
Dynamic Analysis of the Shaping Machine Mechanism
,”
Am. J. Mech. Eng.
,
1
(
7
), pp.
370
373
.
3.
Jeong
,
S.
, and
Hayashi
,
T.
,
2018
, “
Development of a Wheeled Inverted Pendulum Mobile Platform With a Four-Bar Parallel Mechanism
,”
Adv. Rob.
,
32
(
4
), pp.
191
201
.
4.
Gao
,
M.
,
Wang
,
Z.
,
Li
,
S.
,
Li
,
J.
,
Pang
,
Z.
,
Liu
,
S.
, and
Duan
,
Z.
,
2021
, “
Design and Optimization of Exoskeleton Structure of Lower Limb Knee Joint Based on Cross Four-Bar Linkage
,”
AIP Adv.
,
11
(
6
), pp.
065124
.
5.
Hayes
,
M. J. D.
,
Rotzoll
,
M.
,
Bucciol
,
Q.
, and
Copeland
,
Z. A.
,
2023
, “
Planar and Spherical Four-Bar Linkage vi−vj Algebraic Input–Output Equations
,”
Mech. Mach. Theory
,
182
, p.
105222
.
6.
Yang
,
T.
,
Li
,
P.
,
Shen
,
Y.
, and
Liu
,
Y.
,
2023
, “
Center-Driven Planar Closed-Loop Mechanisms Based on an Angulated Four-Bar Linkage
,”
Mech. Mach. Theory
,
180
, p.
105130
.
7.
Nguyen
,
V. L.
,
2022
, “
A Design Approach for Gravity Compensators Using Planar Four-Bar Mechanisms and a Linear Spring
,”
Mech. Mach. Theory
,
172
, p.
104770
.
8.
Wu
,
R.
,
Li
,
R.
, and
Bai
,
S.
,
2021
, “
A Fully Analytical Method for Coupler-Curve Synthesis of Planar Four-Bar Linkages
,”
Mech. Mach. Theory
,
155
, p.
104070
.
9.
Zarkandi
,
S.
,
2021
, “
A Novel Optimization-Based Method to Find Multiple Solutions for Path Synthesis of Planar Four-Bar and Slider-Crank Mechanisms
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
235
(
21
), pp.
5385
5405
.
10.
Copeland
,
Z.
,
Rotzoll
,
M.
,
Hayes
,
M. J. D.
,
Nokleby
,
S.
, and
Cardou
,
P.
,
2021
, “
Concurrent Type and Dimensional Continuous Approximate Function Generator Synthesis for all Planar Four-Bar Mechanisms
,”
11th CCToMM Symposium on Mechanisms, Machines, and Mechatronics
,
Oshawa, Canada
,
June 3–4
, pp.
1
13
.
11.
Murray
,
A.
, and
Michael McCarthy
,
J.
,
2020
, “
Computation of the Developable Form of a Planar Four-Bar Linkage
,”
Proceedings of the 2020 USCToMM Symposium on Mechanical Systems and Robotics
,
Rapid City, SD
,
May 14–16
, pp.
172
178
.
12.
Han
,
J.
, and
Liu
,
W.
,
2019
, “
On the Solution of Eight-Precision-Point Path Synthesis of Planar Four-Bar Mechanisms Based on the Solution Region Methodology
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
064504
.
13.
Meijaard
,
J. P.
, and
van der Wijk
,
V.
,
2019
, “
On the Dynamic Balance of a Planar Four-Bar Mechanism With a Flexible Coupler
,”
Proceedings of the 15th IFToMM World Congress on Mechanism and Machine Science
,
Krakow, Poland
,
June 30–July 4
, pp.
3037
3046
.
14.
Hayes
,
M. J. D.
,
Husty
,
M. L.
, and
Pfurner
,
M.
,
2019
, “
Input-Output Equation for Planar Four-Bar Linkages
,”
16th International Symposium on Advances in Robot Kinematics
,
Bologna, Italy
,
July 1–5
, pp.
12
19
.
15.
Sun
,
J.
,
Wang
,
P.
,
Liu
,
W.
, and
Chu
,
J.
,
2018
, “
Non-Integer-Period Motion Generation of a Planar Four-Bar Mechanism Using Wavelet Series
,”
Mech. Mach. Theory
,
121
(
2018
), pp.
28
41
.
16.
Bai
,
Z. F.
,
Jiang
,
X.
,
Li
,
F.
,
Zhao
,
J. J.
, and
Zhao
,
Y.
,
2018
, “
Reducing Undesirable Vibrations of Planar Linkage Mechanism With Joint Clearance
,”
J. Mech. Sci. Technol.
,
32
(
2
), pp.
559
565
.
17.
Yu
,
J.
,
Liu
,
K.
, and
Kong
,
X.
,
2020
, “
State of the Art of Multi-Mode Mechanisms
,”
J. Mech. Eng.
,
56
(
19
), pp.
14
27
.
18.
Dai
,
J.
,
Kang
,
X.
,
Song
,
Y.
, and
Wei
,
J.
,
2021
,
Reconfigurable Mechanism and Robots-Kinematic Analysis, Synthesis and Control of Bifurcation Process
,
Higher Education Press
,
Beijing
.
19.
Wohlhart
,
K.
,
1996
,
Kinematotropic Linkages
,
Springer Netherlands
,
Dordrecht
.
20.
Dai
,
J.
, and
Rees Jones
,
J.
,
1996
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
.
21.
Dai
,
J. S.
,
Wang
,
D.
, and
Cui
,
L.
,
2009
, “
Orientation and Workspace Analysis of the Multifingered Metamorphic Hand-Metahand
,”
IEEE Trans. Rob.
,
25
(
4
), pp.
942
947
.
22.
Wang
,
D.
, and
Dai
,
J.
,
2007
, “
Theoretical Foundation of Metamorphic Mechanism and Its Synthesis
,”
J. Mech. Eng.
,
43
(
8
), pp.
32
42
.
23.
Zhang
,
K. T.
,
Dai
,
J.
, and
Fang
,
Y.
,
2013
, “
Geometric Constraint and Mobility Variation of two Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011001
.
24.
Gan
,
D. M.
,
Dai
,
J.
, and
Liao
,
Q. Z.
,
2009
, “
Mobility Change in two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041007
.
25.
He
,
C.
,
Wang
,
S.
, and
Wang
,
X.
,
2012
,
Advances in Reconfigurable Mechanisms and Robots I
,
Springer
,
London
.
26.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
,
Advances in Robot Kinematics Theory and Applications
,
Kluwer Academic Publishers
,
Dordrecht
.
27.
Reffat
,
S.
,
Hervé
,
J. M.
,
Nahavandi
,
S.
, and
Trinh
,
H.
,
2007
, “
Two-mode Overconstrained Three-DOFs Rotational Translational Linear-Motor-Based Parallel Kinematics Mechanism for Machine Tool Applications
,”
Robotica
,
25
(
4
), pp.
461
466
.
28.
Kong
,
X.
,
Gosselin
,
C.
, and
Richard
,
P. L.
,
2007
, “
Type Synthesis of Parallel Mechanisms With Multiple Operation Modes
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
595
601
.
29.
Agogino
,
A. K.
,
Sunspiral
,
V.
, and
Atkinson
,
D.
,
2018
, “
Super Ball Bot-Structures for Planetary Landing and Exploration
,”
NASA Technical Reports Server
,
9
(
4
), pp.
1457
1∼20
.
30.
Li
,
Y.
,
Yao
,
Y.
, and
He
,
Y.
,
2018
, “
Design and Analysis of a Multi-Mode Mobile Robot Based on a Parallel Mechanism With Branch Variation
,”
Mech. Mach. Theory
,
130
, pp.
276
300
.
31.
Tseng
,
T. Y.
,
Lin
,
Y. J.
,
Hsu
,
W. C.
,
Lin
,
L. F.
, and
Kuo
,
C. H.
,
2017
, “
A Novel Reconfigurable Gravity Balancer for Lower-Limb Rehabilitation With Switchable Hip/Knee-Only Exercise
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041002
.
32.
Nurahmi
,
L.
,
Caro
,
S.
, and
Solichin
,
M.
,
2019
, “
A Novel Ankle Rehabilitation Device Based on a Reconfigurable 3-RPS Parallel Manipulator
,”
Mech. Mach. Theory
,
134
, pp.
135
150
.
33.
Carbonari
,
L.
,
Callegari
,
M.
,
Palmieri
,
G.
, and
Palpacelli
,
M. C.
,
2014
, “
A New Class of Reconfigurable Parallel Kinematic Machines
,”
Mech. Mach. Theory
,
79
, pp.
173
183
.
34.
Azulay
,
H.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2014
, “
A Multi-Tier Design Methodology for Reconfigurable Milling Machines
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041007
.
35.
Rico
,
J. M.
,
Gallardo
,
J.
, and
Duffy
,
J.
,
1999
, “
Screw Theory and Higher Order Kinematic Analysis of Open Serial and Closed Chains
,”
Mech. Mach. Theory
,
34
(
4
), pp.
559
586
.
36.
Huang
,
G.
,
Zhang
,
D.
,
Zou
,
Q.
,
Ye
,
W.
, and
Kong
,
L.
,
2023
, “
Analysis and Design Method of a Class of Reconfigurable Parallel Mechanisms by Using Reconfigurable Platform
,”
Mech. Mach. Theory
,
181
, p.
105215
.
37.
Wu
,
G.
, and
Bai
,
S.
,
2019
, “
Design and Kinematic Analysis of a 3-RRR Spherical Parallel Manipulator Reconfigured With Four-bar Linkages
,”
Rob. Comput. Integr. Manuf.
,
56
, pp.
55
65
.
38.
Lin
,
R.
, and
Guo
,
W.
,
2022
, “
Type Synthesis of Reconfiguration Parallel Mechanisms Transforming Between Trusses and Mechanisms Based on Friction Self-Locking Composite Joints
,”
Mech. Mach. Theory
,
168
, p.
104597
.
39.
Tian
,
H.
,
Ma
,
H.
, and
Ma
,
K.
,
2018
, “
Method for Configuration Synthesis of Metamorphic Mechanisms Based on Functional Analyses
,”
Mech. Mach. Theory
,
123
, pp.
27
39
.
40.
Tian
,
C.
,
Zhang
,
D.
,
Tang
,
H.
, and
Wu
,
C.
,
2021
, “
Structure Synthesis of Reconfigurable Generalized Parallel Mechanisms With Configurable Platforms
,”
Mech. Mach. Theory
,
160
, p.
104281
.
41.
Tian
,
C.
, and
Zhang
,
D.
,
2021
, “
Design and Analysis of Novel Kinematically Redundant Reconfigurable Generalized Parallel Manipulators
,”
Mech. Mach. Theory
,
166
, p.
104481
.
42.
Wu
,
J.
,
Yang
,
H.
,
Li
,
R.
,
Ruan
,
Q.
,
Yan
,
S.
, and
Yao
,
Y. A.
,
2021
, “
Design and Analysis of a Novel Octopod Platform With a Reconfigurable Trunk
,”
Mech. Mach. Theory
,
156
, p.
104134
.
43.
Liu
,
X.
,
Zhang
,
C.
,
Ni
,
C.
, and
Lu
,
C.
,
2020
, “
A Reconfigurable Multi-Mode Walking-Rolling Robot Based on Motor Time-Sharing Control
,”
Ind. Rob.
,
47
(
2
), pp.
293
311
.
44.
Nayak
,
A.
,
2018
, “
Kinematic Analysis of Reconfigurable Parallel Manipulators
,”
Doctoral dissertation
,
École centrale de Nantes
.
45.
Wang
,
M.
, and
Hang
,
L.
,
2020
, “
Research and Application of Variable DOF Compliant Five-Bar Mechanism Based on Novel Compliant Torsion Joint in Vehicle Side Door Latch
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
234
(
19
), pp.
3789
3808
.
46.
Nie
,
L.
,
2022
, “
A Method for Constructing a Planar Four-Bar Door Locking Mechanism That Enables Manual and Automatic Opening and Closing of Automobile Doors
,” (Chinese Invention Patent Application Number: 202211419098.5).
47.
Tian
,
C.
,
Fang
,
Y.
,
Guo
,
S.
, and
Qu
,
H.
,
2017
, “
A Class of Reconfigurable Parallel Mechanisms With Five-bar Metamorphic Linkage
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
231
(
11
), pp.
2089
2099
.
48.
Tian
,
C.
,
Fang
,
Y.
,
Guo
,
S.
, and
Qu
,
H.
,
2018
, “
Structure Synthesis of Reconfigurable Parallel Mechanisms With Closed-Loop Metamorphic Linkages
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
232
(
7
), pp.
1303
1316
.
49.
Müller
,
A.
,
2014
, “
Higher Derivatives of the Kinematic Mapping and Some Applications
,”
Mech. Mach. Theory
,
76
, pp.
70
85
.
50.
Hervé
,
J. M.
,
1999
, “
The lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
,
34
(
5
), pp.
719
730
.
51.
Angeles
,
J.
,
2004
, “
The Qualitative Synthesis of Parallel Manipulators
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
617
624
.
52.
Wei
,
J.
, and
Dai
,
J.
,
2020
, “
Lie Group Based Type Synthesis Using Transformation Configuration Space for Reconfigurable Parallel Mechanisms With Bifurcation Between Spherical Motion and Planar Motion
,”
ASME J. Mech. Des.
,
142
(
6
), p.
063302
.
53.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “
Constraint Singularities of Parallel Mechanisms
,”
2002 IEEE International Conference on Robotics and Automation
,
Washington, DC
,
May 11–15
,
pp. 496–502
.
54.
Galletti
,
C.
, and
Fanghella
,
P.
,
2001
, “
Single-Loop Kinematotropic Mechanisms
,”
Mech. Mach. Theory
,
36
(
6
), pp.
743
761
.
55.
Husty
,
M. L.
, and
Zsombor-Murray
,
P.
,
1994
,
Advances in Robot Kinematics and Computational Geometry
,
Springer
,
Dordrecht
.
56.
Larochelle
,
P.
, and
Venkataramanujam
,
V.
,
2013
, “
A New Concept for Reconfigurable Planar Motion Generators
,”
ASME 2013 International Mechanical Engineering Congress and Exposition
,
San Diego, CA
,
Nov. 15–21
,
pp. V04AT04A020
.
57.
Venkataramanujam
,
V.
, and
Larochelle
,
P.
,
2014
, “
Analysis of Planar Reconfigurable Motion Generators
,”
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
,
pp. V05AT08A053
.
58.
Ting
,
K. L.
, and
Dou
,
X. H.
,
1996
, “
Classification and Branch Analysis of Stephenson Six-Bar Chains
,”
Mech. Mach. Theory
,
31
(
3
), pp.
283
295
.
59.
Ting
,
K. L.
,
1994
, “
Mobility Criteria of Geared Five-Bar Linkages
,”
Mech. Mach. Theory
,
29
(
2
), pp.
251
264
.
60.
Ting
,
K. L.
,
Wang
,
J.
,
Xue
,
C.
, and
Currie
,
K. R.
,
2010
, “
Full Rotatability and Singularity of Six-Bar and Geared Five-Bar Linkages
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
061007
.
61.
Dou
,
X. H.
, and
Ting
,
K. L.
,
1996
, “
Branch Analysis of Geared Five-Bar Chains
,”
ASME J. Mech. Des.
,
118
(
3
), pp.
384
389
.
62.
Wang
,
J.
,
Ting
,
K. L.
, and
Xue
,
C.
,
2010
, “
Discriminant Method for the Mobility Identification of Single Degree-of-Freedom Double-Loop Linkages
,”
Mech. Mach. Theory
,
45
(
5
), pp.
740
755
.
63.
Nie
,
L.
,
Ding
,
H.
,
Kecskeméthy
,
A.
,
Gan
,
J.
,
Wang
,
J.
, and
Ting
,
K. L.
,
2020
, “
Singularity and Branch Identification of a 2 Degree-of-Freedom (DOF) Seven-Bar Spherical Parallel Manipulator
,”
Mech. Sci.
,
11
(
2
), pp.
381
393
.
64.
Nie
,
L.
,
Wang
,
J.
,
Ting
,
K. L.
,
Zhao
,
D.
,
Wang
,
Q.
,
Ren
,
J.
, and
Sun
,
J.
,
2016
, “
Branch Identification of Spherical Six-Bar Linkages
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
,
pp. V05BT07A072
.
65.
Müller
,
A.
, and
Piipponen
,
S.
, “
On Regular Kinematotropies
,”
14th World Congress in Mechanism and Machine Science
,
Taipei, Taiwan
,
Oct. 25–30
, pp.
1
8
.
66.
Lee
,
C. C.
, and
Hervé
,
J. M.
,
2016
, “
Various Types of RC//RC-Like Linkages and the Discontinuously Movable Koenigs Joint
,”
Mech. Mach. Theory
,
96
, pp.
255
268
.
67.
Schadlbauer
,
J.
,
Walter
,
D. R.
, and
Husty
,
M. L.
,
2014
, “
The 3-RPS Parallel Manipulator From an Algebraic Viewpoint
,”
Mech. Mach. Theory
,
75
, pp.
161
176
.
68.
Ting
,
K.
, and
Liu
,
Y.
,
1991
, “
Rotatability Laws for N-Bar Kinematic Chains and Their Proof
,”
ASME J. Mech. Des.
,
113
(
1
), pp.
32
39
.
69.
Nie
,
L.
,
Ding
,
H.
,
Wang
,
J.
, and
Bi
,
S.
,
2022
, “
Branch Graph Method for Crank Judgement of Complex Multi-Loop Linkage
,”
J. Beijing Univ. Aeronaut. Astronaut.
,
48
(
10
), pp.
1863
1874
.
You do not currently have access to this content.