Abstract

Limb loss affects many people from a variety of backgrounds around the world. The most advanced commercially available prostheses for transfemoral amputees are fully active (powered) designs but remain very expensive and unavailable in the developing world. Consequently, improvements of low-cost, passive prostheses have been made to provide high-quality rehabilitation to amputees of any background. This study explores the design and evaluation of a smooth-locking-based bionic knee joint to replicate the swing phase of the human gait cycle. The two-part design was based on the condyle geometry of the interface between the femur and tibia obtained from magnetic resonance (MR) images of the human subject, while springs were used to replace the anterior and posterior cruciate ligaments. A flexible four-bar linkage mechanism was successfully achieved to provide not only rotation along a variable instantaneous axis but also slight translation in the sagittal plane, similar to the anatomical knee. We systematically evaluated the effects of different spring configurations in terms of stiffness, position, and relaxion length on knee flexion angles during walking. A good replication of the swing phase was achieved by relatively high stiffness and increased relaxation length of springs. The stance phase of the gait cycle was improved compared to some models but remained relatively flat, where further verification should be conducted. In addition, 3D printing technique provides a convenient design and manufacturing process, making the prosthesis customizable for different individuals based on subject-specific modeling of the amputee’s knee.

References

1.
Smith
,
D. G.
,
2004
, “
The Transfemoral Amputation Level, Part 1
,”
inMotion
,
14
(
2
), pp.
54
58
.
2.
Lavery
,
L. A.
,
Ashry
,
H. R.
,
van Houtum
,
W.
,
Pugh
,
J. A.
,
Harkless
,
L. B.
, and
Basu
,
S.
,
1996
, “
Variation in the Incidence and Proportion of Diabetes-Related Amputations in Minorities
,”
Diabetes Care
,
19
(
1
), pp.
48
52
.
3.
Fosse
,
S.
,
Hartemann-Heurtier
,
A.
,
Jacqueminet
,
S.
,
Ha Van
,
G.
,
Grimaldi
,
A.
, and
Fagot-Campagna
,
A.
,
2009
, “
Incidence and Characteristics of Lower Limb Amputations in People With Diabetes
,”
Diabetic Med.
,
26
(
4
), pp.
391
396
.
4.
Hoffstad
,
O.
,
Mitra
,
N.
,
Walsh
,
J.
, and
Margolis
,
D. J.
,
2015
, “
Diabetes, Lower-Extremity Amputation, and Death
,”
Diabetes Care
,
38
(
10
), pp.
1852
1857
.
5.
Kaufman
,
K. R.
,
Levine
,
J. A.
,
Brey
,
R. H.
,
McCrady
,
S. K.
,
Padgett
,
D. J.
, and
Joyner
,
M. J.
,
2008
, “
Energy Expenditure and Activity Amputees Using Mechanical and of Transfemoral Microprocessor-Controlled Prosthetic Knees
,”
Arch. Phys. Med. Rehabil.
,
89
(
7
), pp.
1380
1385
.
6.
Gawande
,
A.
,
2004
, “
Casualties of War—Military Care for the Wounded From Iraq and Afghanistan
,”
New Engl. J. Med.
,
351
(
24
), pp.
2471
2475
.
7.
Windrich
,
M.
,
Grimmer
,
M.
,
Christ
,
O.
,
Rinderknecht
,
S.
, and
Beckerle
,
P.
,
2016
, “
Active Lower Limb Prosthetics: A Systematic Review of Design Issues and Solutions
,”
Biomed. Eng. Online
,
15
(
S3
), pp.
5
19
.
8.
Gholizadeh
,
H.
,
Abu Osman
,
N. A.
,
Eshraghi
,
A.
, and
Ali
,
S.
,
2014
, “
Transfemoral Prosthesis Suspension Systems A Systematic Review of the Literature
,”
Am. J. Phys. Med. Rehabil.
,
93
(
9
), pp.
809
823
.
9.
Price
,
M. A.
,
Beckerle
,
P.
, and
Sup
,
F. C.
,
2019
, “
Design Optimization in Lower Limb Prostheses: A Review
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
8
), pp.
1574
1588
.
10.
Spanias
,
J. A.
,
Perreault
,
E. J.
, and
Hargrove
,
L. J.
,
2016
, “
Detection of and Compensation for EMG Disturbances for Powered Lower Limb Prosthesis Control
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
24
(
2
), pp.
226
234
.
11.
Sup
,
F.
,
Bohara
,
A.
, and
Goldfarb
,
M.
,
2008
, “
Design and Control of a Powered Transfemoral Prosthesis
,”
Int. J. Rob. Res.
,
27
(
2
), pp.
263
273
.
12.
Lenzi
,
T.
,
Cempini
,
M.
,
Hargrove
,
L.
, and
Kuiken
,
T.
,
2018
, “
Design, Development, and Testing of a Lightweight Hybrid Robotic Knee Prosthesis
,”
Int. J. Rob. Res.
,
37
(
8
), pp.
953
976
.
13.
Parri
,
A.
,
Martini
,
E.
,
Geeroms
,
J.
,
Flynn
,
L.
,
Pasquini
,
G.
,
Crea
,
S.
,
Lova
,
R. M.
, et al
,
2017
, “
Whole Body Awareness for Controlling a Robotic Transfemoral Prosthesis
,”
Front. Neurorobotics
,
11
, p.
25
.
14.
Zahedi
,
S.
,
Sykes
,
A.
,
Lang
,
S.
, and
Cullington
,
I.
,
2005
, “
Adaptive Prosthesis—A New Concept in Prosthetic Knee Control
,”
Robotica
,
23
(
3
), pp.
337
344
.
15.
Heidarzadeh
,
S.
,
Sharifi
,
M.
,
Salarieh
,
H.
, and
Alasty
,
A.
,
2019
, “
A Novel Robust Model Reference Adaptive Impedance Control Scheme for an Active Transtibial Prosthesis
,”
Robotica
,
37
(
9
), pp.
1562
1581
.
16.
Reaz
,
M. B. I.
,
Hussain
,
M. S.
, and
Mohd-Yasin
,
F.
,
2006
, “
Techniques of EMG Signal Analysis: Detection, Processing, Classification and Applications
,”
Biol. Proced. Online
,
8
(
1
), pp.
11
35
.
17.
Hefferman
,
G. M.
,
Zhang
,
F.
,
Nunnery
,
M. J.
, and
Huang
,
H.
,
2015
, “
Integration of Surface Electromyographic Sensors With the Transfemoral Amputee Socket: A Comparison of Four Differing Configurations
,”
Prosthet. Orthot. Int.
,
39
(
2
), pp.
166
173
.
18.
Song
,
S.
, and
Geyer
,
H.
,
2015
, “
Regulating Speed in a Neuromuscular Human Running Model
,”
2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids)
,
Seoul, South Korea
,
Nov. 3–5
, IEEE, pp.
217
222
.
19.
Össur
, “
Power knee
,” https://www.ossur.com/en-us/prosthetics/knees/power-knee, Accessed July 10, 2022,
20.
Blatchford
, “
Linx
,” https://www.blatchfordus.com/products/linx, Accessed July 10, 2022.
21.
Sawers
,
A. B.
, and
Hafner
,
B. J.
,
2013
, “
Outcomes Associated With the Use of Microprocessor-Controlled Prosthetic Knees Among Individuals With Unilateral Transfemoral Limb Loss: A Systematic Review
,”
J. Rehabil. Res. Dev.
,
50
(
3
), pp.
273
314
.
22.
Kannenberg
,
A.
,
Zacharias
,
B.
, and
Probsting
,
E.
,
2014
, “
Benefits of Microprocessor-Controlled Prosthetic Knees to Limited Community Ambulators: Systematic Review
,”
J. Rehabil. Res. Dev.
,
51
(
10
), pp.
1469
1495
.
23.
Fluit
,
R.
,
Prinsen
,
E. C.
,
Wang
,
S.
, and
van der Kooij
,
H.
,
2020
, “
A Comparison of Control Strategies in Commercial and Research Knee Prostheses
,”
IEEE Trans. Biomed. Eng.
,
67
(
1
), pp.
277
290
.
24.
Lee
,
J. T.
,
Bartlett
,
H. L.
, and
Goldfarb
,
M.
,
2020
, “
Design of a Semipowered Stance-Control Swing-Assist Transfemoral Prosthesis
,”
IEEE/ASME Trans. Mechatron.
,
25
(
1
), pp.
175
184
.
25.
Johansson
,
J. L.
,
Sherrill
,
D. M.
,
Riley
,
P. O.
,
Bonato
,
P.
, and
Herr
,
H.
,
2005
, “
A Clinical Comparison of Variable-Damping and Mechanically Passive Prosthetic Knee Devices
,”
Am. J. Phys. Med. Rehabil.
,
84
(
8
), pp.
563
575
.
26.
Tang
,
P. C. Y.
,
Ravji
,
K.
,
Key
,
J. J.
,
Mahler
,
D. B.
,
Blume
,
P. A.
, and
Sumpio
,
B.
,
2008
, “
Let Them Walk! Current Prosthesis Options for Leg and Foot Amputees
,”
J. Am. Coll. Surg.
,
206
(
3
), pp.
548
560
.
27.
Andrysek
,
J.
,
2010
, “
Lower-Limb Prosthetic Technologies in the Developing World: A Review of Literature From 1994-2010
,”
Prosthet. Orthot. Int.
,
34
(
4
), pp.
378
398
.
28.
Jensen
,
J. S.
, and
Raab
,
W.
,
2004
, “
Clinical Field Testing of Trans-Femoral Prosthetic Technologies: Resin-Wood and ICRC-Polypropylene
,”
Prosthet. Orthot. Int.
,
28
(
2
), pp.
141
151
.
29.
Andrysek
,
J.
,
Klejman
,
S.
,
Torres-Moreno
,
R.
,
Heim
,
W.
,
Steinnagel
,
B.
, and
Glasford
,
S.
,
2011
, “
Mobility Function of a Prosthetic Knee Joint With an Automatic Stance Phase Lock
,”
Prosthet. Orthot. Int.
,
35
(
2
), pp.
163
170
.
30.
Mohanty
,
R. K.
,
Mohanty
,
R. C.
, and
Sabut
,
S. K.
,
2020
, “
A Systematic Review on Design Technology and Application of Polycentric Prosthetic Knee in Amputee Rehabilitation
,”
Phys. Eng. Sci. Med.
,
43
(
3
), pp.
781
798
.
31.
Hamner
,
S. R.
,
Narayan
,
V. G.
, and
Donaldson
,
K. M.
,
2013
, “
Designing for Scale: Development of the ReMotion Knee for Global Emerging Markets
,”
Ann. Biomed. Eng.
,
41
(
9
), pp.
1851
1859
.
32.
Ayers
,
S. R.
, and
Gonzalez
,
R. V.
,
2010
, “
Implementation of a New Polycentric Knee Technology in the Developing World
,”
Proceedings of the 13th World Congress of the International Society for Prosthetics and Orthotics
,
Leipzig, Germany
,
May 10–15
, ISPO, pp.
390
391
.
33.
Ramakrishnan
,
T.
,
Schlafly
,
M.
, and
Reed
,
K. B.
,
2016
, “
Biomimetic Transfemoral Knee With a Gear Mesh Locking Mechanism
,”
Int. J. Eng. Res. Innov.
,
8
(
2
), pp.
30
38
.
34.
Ramakrishnan
,
T.
,
Schlafly
,
M.
, and
Reed
,
K. B.
,
2017
, “
Evaluation of 3D Printed Anatomically Scalable Transfemoral Prosthetic Knee
,”
2017 International Conference on Rehabilitation Robotics (ICORR)
,
London, UK
,
July 17–20
, IEEE, pp.
1160
1164
.
35.
Arelekatti
,
V. N. M.
, and
Winter
,
V. A. G.
,
2018
, “
Design and Preliminary Field Validation of a Fully Passive Prosthetic Knee Mechanism for Users With Transfemoral Amputation in India
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031007
.
36.
Goldblatt
,
J. P.
, and
Richmond
,
J. C.
,
2003
, “
Anatomy and Biomechanics of the Knee
,”
Oper. Tech. Sport. Med.
,
11
(
3
), pp.
172
186
.
37.
Bowman
,
K. F.
, and
Sekiya
,
J. K.
,
2010
, “
Anatomy and Biomechanics of the Posterior Cruciate Ligament, Medial and Lateral Sides of the Knee
,”
Sports Med. Arthrosc.
,
18
(
4
), pp.
222
229
.
38.
Choi
,
C. H.
,
Kim
,
S. J.
,
Chun
,
Y. M.
,
Kim
,
S. H.
,
Lee
,
S. K.
,
Eom
,
N. K.
, and
Jung
,
M.
,
2018
, “
Influence of Knee Flexion Angle and Transverse Drill Angle on Creation of Femoral Tunnels in Double-Bundle Anterior Cruciate Ligament Reconstruction Using the Transportal Technique: Three-Dimensional Computed Tomography Simulation Analysis
,”
Knee
,
25
(
1
), pp.
99
108
.
39.
Piazza
,
S. J.
, and
Cavanagh
,
P. R.
,
2000
, “
Measurement of the Screw-Home Motion of the Knee Is Sensitive to Errors in Axis Alignment
,”
J. Biomech.
,
33
(
8
), pp.
1029
1034
.
40.
Zavatsky
,
A. B.
, and
O'Connor
,
J. J.
,
1992
, “
A Model of Human Knee Ligaments in the Sagittal Plane: Part 1: Response to Passive Flexion
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
206
(
3
), pp.
125
134
.
41.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1991
, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
24
(
11
), pp.
1019
1031
.
42.
Beidokhti
,
H. N.
,
Janssen
,
D.
,
van de Groes
,
S.
,
Hazrati
,
J.
,
Van den Boogaard
,
T.
, and
Verdonschot
,
N.
,
2017
, “
The Influence of Ligament Modelling Strategies on the Predictive Capability of Finite Element Models of the Human Knee Joint
,”
J. Biomech.
,
65
, pp.
1
11
.
43.
Maloney
,
S. J.
,
Richards
,
J.
,
Nixon
,
D. G. D.
,
Harvey
,
L. J.
, and
Fletcher
,
I. M.
,
2017
, “
Do Stiffness and Asymmetries Predict Change of Direction Performance?
,”
J. Sports. Sci.
,
35
(
6
), pp.
547
556
.
44.
Lee
,
S. J.
, and
Hidler
,
J.
,
2008
, “
Biomechanics of Overground vs. Treadmill Walking in Healthy Individuals
,”
J. Appl. Physiol.
,
104
(
3
), pp.
747
755
.
45.
Torricelli
,
D.
,
Gonzalez
,
J.
,
Weckx
,
M.
,
Jimenez-Fabian
,
R.
,
Vanderborght
,
B.
,
Sartori
,
M.
,
Dosen
,
S.
,
Farina
,
D.
,
Lefeber
,
D.
, and
Pons
,
J. L.
,
2016
, “
Human-Like Compliant Locomotion: State of the Art of Robotic Implementations
,”
Bioinspir. Biomim.
,
11
(
5
), p.
051002
.
46.
Segal
,
A. D.
,
Orendurff
,
M. S.
,
Mute
,
G. K.
,
McDowell
,
M. L.
,
Pecoraro
,
J. A.
,
Shofer
,
J.
, and
Czerniecki
,
J. M.
,
2006
, “
Kinematic and Kinetic Comparisons of Transfemoral Amputee Gait Using C-Leg (R) and Mauch SNS (R) Prosthetic Knees
,”
J. Rehabil. Res. Dev.
,
43
(
7
), pp.
857
869
.
47.
Chien
,
M. S. C. H.
,
Erdemir
,
A.
,
van den Bogert
,
A. J.
, and
Smith
,
W. A.
,
2014
, “
Development of Dynamic Models of the Mauch Prosthetic Knee for Prospective Gait Simulation
,”
J. Biomech.
,
47
(
12
), pp.
3178
3184
.
You do not currently have access to this content.