Abstract

This article proposes a novel kinematic calibration approach to address the ill-conditioned identification matrix problem and enhance the accuracy of parallel manipulators (PMs). The kinematic calibration approach applies the truncated total least-square (T-TLS) regularization method to the inverse kinematic calibration of PMs and does not have the unit inconsistency issue and configuration selection issue. The performance of the T-TLS method in the inverse kinematic calibration of PMs that have the ill-conditioned identification matrix problem is compared to that of classical regularization methods, including the truncated singular value decomposition (TSVD) method and Tikhonov method, in simulations. Then, the kinematic calibration approach is applied to a 3-PSS/S spherical PM prototype in the real world. For the 3-PSS/S spherical PM prototype, the kinematic calibration approach can reduce the absolute angular errors of the end-effector from over 1.0 deg before calibration to less than 0.1 deg after calibration.

References

1.
Zhuang
,
H. Q.
,
Yan
,
J. H.
, and
Masory
,
O.
,
1998
, “
Calibration of Stewart Platforms and Other Parallel Manipulators by Minimizing Inverse Kinematic Residuals
,”
J. Rob. Syst.
,
15
(
7
), pp.
395
405
.
2.
Huang
,
T.
,
Bai
,
P. J.
,
Mei
,
J. P.
, and
Chetwynd
,
D. G.
,
2016
, “
Tolerance Design and Kinematic Calibration of a Four-Degrees-of-Freedom Pick-and-Place Parallel Robot
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061018
.
3.
Huang
,
T.
,
Hong
,
Z.
,
Mei
,
J.
, and
Chetwynd
,
D. G.
,
2006
, “
Kinematic Calibration of the 3-DOF Module of a 5-DOF Reconfigurable Hybrid Robot Using a Double-Ball-Bar System
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
, pp.
508
512
.
4.
Li
,
Z.
,
Li
,
S.
, and
Luo
,
X.
,
2021
, “
An Overview of Calibration Technology of Industrial Robots
,”
IEEE/CAA J. Automat. Sin.
,
8
(
1
), pp.
23
36
.
5.
Majarena
,
A. C.
,
Santolaria
,
J.
,
Samper
,
D.
, and
Aguilar
,
J. J.
,
2010
, “
An Overview of Kinematic and Calibration Models Using Internal/External Sensors or Constraints to Improve the Behavior of Spatial Parallel Mechanisms
,”
Sensors
,
10
(
11
), pp.
10256
10297
.
6.
Verner
,
M.
,
Xi
,
F. F.
, and
Mechefske
,
C.
,
2005
, “
Optimal Calibration of Parallel Kinematic Machines
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
62
69
.
7.
Joubair
,
A.
,
Zhao
,
L. F.
,
Bigras
,
P.
, and
Bonev
,
I.
,
2015
, “
Absolute Accuracy Analysis and Improvement of a Hybrid 6-DOF Medical Robot
,”
Ind. Robot: An Int. J.
,
42
(
1
), pp.
44
53
.
8.
Bai
,
P. J.
,
Mei
,
J. P.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2016
, “
Kinematic Calibration of Delta Robot Using Distance Measurements
,”
Proc. Inst. Mech. Eng. C
,
230
(
3
), pp.
414
424
.
9.
Guo
,
J. Z.
,
Wang
,
D.
,
Fan
,
R.
,
Chen
,
W. Y.
, and
Zhao
,
G. H.
,
2019
, “
Kinematic Calibration and Error Compensation of a Hexaglide Parallel Manipulator
,”
Proc. Inst. Mech. Eng. B
,
233
(
1
), pp.
215
225
.
10.
Luo
,
X.
,
Xie
,
F. G.
,
Liu
,
X. J.
, and
Xie
,
Z. H.
,
2021
, “
Kinematic Calibration of a 5-Axis Parallel Machining Robot Based on Dimensionless Error Mapping Matrix
,”
Rob. Comput.-Integrated Manuf.
,
70
, pp.
102
115
.
11.
Hu
,
Y.
,
Gao
,
F.
,
Zhao
,
X. C.
,
Wei
,
B. C.
,
Zhao
,
D. H.
, and
Zhao
,
Y. N.
,
2018
, “
Kinematic Calibration of a 6-DOF Parallel Manipulator Based on Identifiable Parameters Separation (IPS)
,”
Mech. Mach. Theory
,
126
, pp.
61
78
.
12.
Shang
,
W. W.
,
Zhang
,
B.
,
Cong
,
S.
, and
Lou
,
Y. J.
,
2020
, “
Dual-Space Adaptive Synchronization Control of Redundantly-Actuated Cable-Driven Parallel Robots
,”
Mech. Mach. Theory
,
152
, p.
103954
.
13.
Zhuang
,
H. Q.
,
Masory
,
O.
, and
Yan
,
J. H.
,
1995
, “
Kinematic Calibration of a Stewart Platform Using Pose Measurements Obtained by a Single Theodolite
,”
Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots
,
Pittsburgh, PA
,
Aug. 5–9
, pp.
329
334
.
14.
Cheng
,
G.
,
Ge
,
S. R.
, and
Yu
,
J. L.
,
2011
, “
Sensitivity Analysis and Kinematic Calibration of 3-UCR Symmetrical Parallel Robot Leg
,”
J. Mech. Sci. Technol.
,
25
(
7
), pp.
1647
1655
.
15.
Klimchik
,
A.
,
Furet
,
B.
,
Caro
,
S.
, and
Pashkevich
,
A.
,
2015
, “
Identification of the Manipulator Stiffness Model Parameters in Industrial Environment
,”
Mech. Mach. Theory
,
90
, pp.
1
22
.
16.
Du
,
G. L.
,
Liang
,
Y. H.
,
Li
,
C. Q.
, and
Liu
,
P. X.
,
2020
, “
Online Robot Kinematic Calibration Using Hybrid Filter With Multiple Sensors
,”
IEEE Trans. Instrum. Measure.
,
69
(
9
), pp.
7092
7107
.
17.
Qi
,
J.
,
Chen
,
B.
, and
Zhang
,
D.
,
2021
, “
A Calibration Method for Enhancing Robot Accuracy Through Integration of Kinematic Model and Spatial Interpolation Algorithm
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061013
.
18.
Huang
,
P.
,
Wang
,
J. S.
,
Wang
,
L. P.
, and
Yao
,
R.
,
2011
, “
Kinematical Calibration of a Hybrid Machine Tool With Regularization Method
,”
Int. J. Mach. Tools Manuf.
,
51
(
3
), pp.
210
220
.
19.
Tian
,
W. J.
,
Mou
,
M. W.
,
Yang
,
J. H.
, and
Yin
,
F. W.
,
2019
, “
Kinematic Calibration of a 5-DOF Hybrid Kinematic Machine Tool by Considering the Ill-Posed Identification Problem Using Regularisation Method
,”
Rob. Comput. Integrated Manuf.
,
60
, pp.
49
62
.
20.
Sun
,
Y.
, and
Hollerbach
,
J. M.
,
2008
, “
Observability Index Selection for Robot Calibration
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
831
836
.
21.
Wang
,
H. B.
,
Gao
,
T. Q.
,
Kinugawa
,
J.
, and
Kosuge
,
K.
,
2017
, “
Finding Measurement Configurations for Accurate Robot Calibration: Validation With a Cable-Driven Robot
,”
IEEE Trans. Rob.
,
33
(
5
), pp.
1156
1169
.
22.
Huang
,
C. H.
,
Xie
,
F. G.
,
Liu
,
X. J.
, and
Meng
,
Q. Z.
,
2022
, “
Measurement Configuration Optimization and Kinematic Calibration of a Parallel Robot
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031017
.
23.
Hansen
,
P. C.
,
1987
, “
The Truncated SVD as a Method for Regularization
,”
BIT Numer. Math.
,
27
(
4
), pp.
534
553
.
24.
Tikhonov
,
A. N.
,
1963
, “
On the Solution of Ill-Posed Problems and the Method of Regularization
,”
Doklady Akademii Nauk
,
151
(
3
), pp.
501
504
.
25.
Huang
,
P.
,
Wang
,
J. S.
,
Wang
,
L. P.
, and
Yao
,
R.
,
2011
, “
Identification of Structure Errors of 3-PRS-XY Mechanism With Regularization Method
,”
Mech. Mach. Theory
,
46
(
7
), pp.
927
944
.
26.
Liu
,
Y. Z.
,
Wu
,
J.
,
Wang
,
L. P.
, and
Wang
,
J. S.
,
2016
, “
Parameter Identification Algorithm of Kinematic Calibration in Parallel Manipulators
,”
Adv. Mech. Eng.
,
8
(
9
), pp.
1
16
.
27.
Fierro
,
R. D.
,
Hansen
,
G. H.
, and
O’Leary
,
D. P.
,
1997
, “
Regularization by Truncated Total Least Squares
,”
SIAM J. Sci. Comput.
,
18
(
4
), pp.
1223
1241
.
28.
Wang
,
J.
,
Geay
,
J. E.
, and
Guillot
,
D.
,
2014
, “
Evaluating Climate Field Reconstruction Techniques Using Improved Emulations of Real-World Conditions
,”
Climate Past
,
10
(
1
), pp.
1
19
.
29.
Shou
,
G.
,
Xia
,
L.
, and
Jiang
,
M. F.
,
2008
, “
Truncated Total Least Squares: A New Regularization Method for the Solution of ECG Inverse Problems
,”
IEEE Trans. Biomed. Eng.
,
55
(
4
), pp.
1327
1335
.
30.
Yang
,
X. S.
,
Zou
,
Z. Y.
, and
Lou
,
Y. J.
,
2021
, “
Design and Kinematic Analysis of a Novel 7-DOF Dual-Arm Parallel Manipulator for 3C Products Assembly
,”
International Conference on Intelligent Robotics and Applications
,
Yantai, China
,
Oct. 22–25
, pp.
290
301
.
31.
Simas
,
H.
, and
Gregorio
,
R. D.
,
2016
, “
Geometric Error Effects on Manipulators’ Positioning Precision: A General Analysis and Evaluation Method
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061016
.
32.
Chen
,
G. L.
,
Wang
,
H.
, and
Lin
,
Z. Q.
,
2014
, “
Determination of the Identifiable Parameters in Robot Calibration Based on the POE Formula
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1066
1077
.
33.
Mu
,
Z. G.
,
Liu
,
T. L.
,
Xu
,
W. F.
,
Lou
,
Y. J.
, and
Liang
,
B.
,
2019
, “
A Hybrid Obstacle-Avoidance Method of Spatial Hyper-Redundant Manipulators for Servicing in Confined Space
,”
Robotica
,
37
(
6
), pp.
998
1019
.
34.
Mitchel
,
T. J.
,
2000
, “
An Algorithm for the Construction of D-Optimal Experimental Designs
,”
Technometrics
,
42
(
2
), pp.
48
54
.
35.
Verner
,
M.
,
Xi
,
F. F.
, and
Mechefske
,
C.
,
2005
, “
Optimal Calibration of Parallel Kinematic Machines
,”
ASME J. Mech. Des.
,
127
(
1
), p.
031003
.
36.
Huffel
,
S. V.
, and
Vandewalle
,
J.
,
1991
,
The Total Least Squares Problem: Computational Aspects and Analysis
,
SIAM
,
Philadelphia, PA
.
37.
Elden
,
L.
,
1984
, “
A Note on the Computation of the Generalized Cross-Validation Function for Ill-Conditioned Least Squares Problems
,”
BIT Numer. Math.
,
24
(
4
), pp.
467
472
.
38.
Hansen
,
P. C.
, and
O’Leary
,
D. P.
,
1993
, “
The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems
,”
SIAM J. Sci. Comput.
,
14
(
6
), pp.
1487
1503
.
39.
Hansen
,
P. C.
,
1994
, “
Regularization Tools: A Matlab Package for Analysis and Solution of Discrete Ill-Posed Problems
,”
Numer. Algo.
,
6
(
1
), pp.
1
35
.
40.
ISO 9283
,
1998
,
Manipulating Industrial Robots Performance Criteria and Related Test Methods
,
International Organization of Standards
,
Geneva, Switzerland
.
41.
Nabat
,
V.
,
de la O Rodriguez
,
M.
,
Company
,
O.
,
Krut
,
S.
, and
Pierrot
,
F.
,
2005
, “
Par4: Very High Speed Parallel Robot for Pick-and-Place
,”
2005 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Edmonton, AB, Canada
,
Aug. 2–6
, pp.
553
558
.
You do not currently have access to this content.