Abstract
The foot sole of the biped robot is an important factor for stable walking. In this study, the limitations of existing bipedal robot soles are introduced and the necessity for the development of a new sole mechanism is presented. Inspired by a robot sole based on the granular jamming effect, we have developed a variable stiffness sole (VSS), which adapts to the shape of obstacles on the ground in compliant mode and provides robust support in stiff mode. Finally, the performance of the VSS is verified by several experiments integrating the VSS with the real humanoid robot platform RoK-3. The experimental results verified that the VSS is advantageous in uneven terrain walking.
Issue Section:
Technical Brief
References
1.
Hirai
, K.
, Hirose
, M.
, Haikawa
, Y.
, and Takenaka
, T.
, 1998
, “The Development of Honda Humanoid Robot
,” 1998 IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146)
, Leuven, Belgium
, May 20
, Vol. 2, pp. 1321
–1326
.2.
Yamaguchi
, J.
, Takanishi
, A.
, and Kato
, I.
, 1995
, “Experimental Development of a Foot Mechanism With Shock Absorbing Material for Acquisition of Landing Surface Position Information and Stabilization of Dynamic Biped Walking
,” Proceedings of 1995 IEEE International Conference on Robotics and Automation
, Nagoya, Japan
, May 21–27
, Vol. 3, pp. 2892
–2899
.3.
Choi
, W.
, Zhou
, C.
, Medrano-Cerda
, G. A.
, Caldwell
, D. G.
, and Tsagarakis
, N. G.
, 2015
, “A New Foot Sole Design for Humanoids Robots Based on Viscous Air Damping Mechanism
,” 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, Hamburg, Germany
, Sept. 28–Oct. 3
, pp. 4498
–4503
.4.
Radford
, N. A.
, Strawser
, P.
, Hambuchen
, K.
, Mehling
, J. S.
, Verdeyen
, W. K.
, Donnan
, A. S.
, Holley
, J.
, Sanchez
, J.
, Nguyen
, V.
, Bridgwater
, L.
, and Berka
, R.
, 2015
, “Valkyrie: Nasa’s First Bipedal Humanoid Robot
,” J. Field Rob.
, 32
(3
), pp. 397
–419
. 5.
Nelson
, G.
, Saunders
, A.
, and Playter
, R.
, 2019
, “The Petman and Atlas Robots at Boston Dynamics,” Humanoid Robotics: A Reference
, A.
Goswami
, and P.
Vadakkepat
, eds., Springer
, Dordrecht
, pp. 169
–186
.6.
David
, A.
, Chardonnet
, J.-R.
, Kheddar
, A.
, Kaneko
, K.
, and Yokoi
, K.
, 2008
, “Study of an External Passive Shock-Absorbing Mechanism for Walking Robots
,” Humanoids 2008 – 8th IEEE-RAS International Conference on Humanoid Robots
, Daejeon, South Korea
, Dec. 1–3
, pp. 1204
–1210
.7.
Piazza
, C.
, Della Santina
, C.
, Gasparri
, G. M.
, Catalano
, M. G.
, Grioli
, G.
, Garabini
, M.
, and Bicchi
, A.
, 2016
, “Toward an Adaptive Foot for Natural Walking
,” 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids)
, Cancun, Mexico
, Nov. 15–17
, pp. 1204
–1210
.8.
Hashimoto
, K.
, Hosobata
, T.
, Sugahara
, Y.
, Mikuriya
, Y.
, Sunazuka
, H.
, Kawase
, M.
, Lim
, H.
, and Takanishi
, A.
, 2005
, “Development of Foot System of Biped Walking Robot Capable of Maintaining Four-Point Contact
,” 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Edmonton, AB, Canada
, Aug. 2–6
, pp. 1361
–1366
.9.
Ohtsuka
, S.
, Endo
, G.
, Fukushima
, E. F.
, and Hirose
, S.
, 2010
, “Development of Terrain Adaptive Sole for Multi-Legged Walking Robot
,” 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Taipei, Taiwan
, Oct. 18–22
, pp. 5354
–5359
.10.
Kang
, H.
, Hashimoto
, K.
, Kondo
, H.
, Hattori
, K.
, Nishikawa
, K.
, Hama
, Y.
, Lim
, H.
, Takanishi
, A.
, Suga
, K.
, and Kato
, K.
, 2010
, “Realization of Biped Walking on Uneven Terrain by New Foot Mechanism Capable of Detecting Ground Surface
,” 2010 IEEE International Conference on Robotics and Automation
, Anchorage, AK
, May 3–7
, pp. 5167
–5172
.11.
Seo
, J.
, and Yi
, B.
, 2009
, “Modeling and Analysis of a Biomimetic Foot Mechanism
,” 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
, St. Louis, MO
, Oct. 11–15
, pp. 1472
–1477
.12.
Fondahl
, K.
, Kuehn
, D.
, Beinersdorf
, F.
, Bernhard
, F.
, Grimminger
, F.
, Schilling
, M.
, Stark
, T.
, and Kirchner
, F.
, 2012
, “An Adaptive Sensor Foot for a Bipedal and Quadrupedal Robot
,” 2012 4th IEEE RAS EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)
, Rome, Italy
, June 24–27
, pp. 270
–275
.13.
Rice
, J. J.
, Schimmels
, J. M.
, and Huang
, S.
, 2015
, “Design and Evaluation of a Passive Ankle Prosthesis With Powered Push-Off
,” ASME J. Mech. Rob.
, 8
(2
), p. 021012
. 14.
Hicks
, J.
, 1954
, “The Mechanics of the Foot: II. The Plantar Aponeurosis and the Arch
,” J. Anat.
, 88
(Pt 1
), p. 25
.15.
Hu
, J.
, Xiao
, C.
, and Wen
, T.
, 2021
, “A Novel Tunable Stiffness Mechanism Using Filament Jamming
,” ASME J. Mech. Rob.
, 13
(6
), p. 061015
. 16.
Gao
, Y.
, Huang
, X.
, Mann
, I. S.
, and Su
, H.-J.
, 2020
, “A Novel Variable Stiffness Compliant Robotic Gripper Based on Layer Jamming
,” ASME J. Mech. Rob.
, 12
(5
), p. 051013
. 17.
Brown
, E.
, Rodenberg
, N.
, Amend
, J.
, Mozeika
, A.
, Steltz
, E.
, Zakin
, M. R.
, Lipson
, H.
, and Jaeger
, H. M.
, 2010
, “Universal Robotic Gripper Based on the Jamming of Granular Material
,” Proc. Natl. Acad. Sci. U. S. A.
, 107
(44
), p. 18 809
. 18.
Najmuddin
, A.
, Fukuoka
, Y.
, and Ochiai
, S.
, 2012
, “Experimental Development of Stiffness Adjustable Foot Sole for Use by Bipedal Robots Walking on Uneven Terrain
,” 2012 IEEE/SICE International Symposium on System Integration (SII)
, Fukuoka, Japan
, Dec. 16–18
, pp. 248
–253
.19.
Najmuddin
, I. A.
, Ishijima
, E.
, and Fukuoka
, Y.
, 2012
, “2A1-T01 Realization of Bipedal Robot Walking on Uneven Surface by Utilizing Stiffness-Variable Foot Sole Mechanism (Walking Robot (1))
,” The Proceedings of JSME Annual Conference on Robotics and Mechatronics (Robomec) 2012
, Hamamatsu, Japan
, May 27–29
, pp. 2A1–T01_1.20.
Hauser
, S.
, Mutlu
, M.
, Banzet
, P.
, and Ijspeert
, A.
, 2018
, “Compliant Universal Grippers as Adaptive Feet in Legged Robots
,” Adv. Rob.
, 32
(15
), pp. 825
–836
. 21.
Lathrop
, E.
, Adibnazari
, I.
, Gravish
, N.
, and Tolley
, M. T.
, 2020
, “Shear Strengthened Granular Jamming Feet for Improved Performance Over Natural Terrain
,” 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft)
, New Haven, CT
, May 15–July 15
, pp. 388
–393
.22.
Nadia
, C
, John
, A
, Bill
, C
, and Sami
, F
, 2016
, “Soft Robotics Commercialization: Jamming Grippers From Research to Product.
” Soft Rob.
, 3
(4
), pp. 213
–222
.23.
Jeong
, H.
, Sim
, O.
, Bae
, H.
, Lee
, K.
, Oh
, J.
, and Oh
, J.-H.
, 2017
, “Biped Walking Stabilization Based on Foot Placement Control Using Capture Point Feedback
,” 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, Vancouver, BC, Canada
, Sept. 24–28
, IEEE, pp. 5263
–5269
.24.
Jeong
, H.
, Lee
, K.
, Kim
, W.
, Lee
, I.
, and Oh
, J.-H.
, 2020
, “Design and Control of the Rapid Legged Platform Gazelle
,” Mechatronics
, 66
(1
), p. 102319
. 25.
Han
, Y.-H.
, Namgung
, J.
, and Cho
, B.-K.
, 2022
, “Walking Control Framework on Uneven Terrain Using Variable Stiffness Sole
,” 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, Kyoto, Japan
, Oct. 23–27
, pp. 8328
–8335
.Copyright © 2023 by ASME
You do not currently have access to this content.