Abstract

Aerial vehicle missions require navigating trade-offs during design, such as the range, speed, maneuverability, and size. Multi-modal aerial vehicles enable this trade-off to be negotiated during flight. This paper presents a Bistable Aerial Transformer (BAT) robot, a novel morphing hybrid aerial vehicle that switches between quadrotor and fixed-wing modes via rapid acceleration and without any additional actuation beyond those required for normal flight. The design features a compliant bistable mechanism made of thermoplastic polyurethane (TPU) that bears a large mass at the center of the robot’s body. When accelerating, inertial forces transition the vehicle between its stable modes, and a four-bar linkage connected to the bistable mechanism folds the vehicle’s wings in and out. The paper includes the full robot design and a comparison of the fabricated system to the elastodynamic simulation. Successful transitions between the two modes in mid-flight, as well as sustained flight in each mode indicate that the vehicle experiences higher agility in the quadrotor mode and higher flight efficiency in the fixed-wing mode, at an energy equivalent cost of only 2 s of flight time per pair of transitions. The vehicle demonstrates how compliant and bistable mechanisms can be integrated into future aerial vehicles for controllable self-reconfiguration for tasks such as surveillance and sampling that require a combination of maneuverability and long-distance flight.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Kim
,
J.
,
Kim
,
S.
,
Ju
,
C.
, and
Son
,
H. I.
,
2019
, “
Unmanned Aerial Vehicles in Agriculture: A Review of Perspective of Platform, Control, and Applications
,”
IEEE Access
,
7
, p.
105100
.
2.
Sun
,
J.
,
Guan
,
Q.
,
Liu
,
Y.
, and
Leng
,
J.
,
2016
, “
Morphing Aircraft Based on Smart Materials and Structures: A State-of-the-Art Review
,”
J. Intell. Mater. Syst. Struct.
,
27
(
17
), pp.
2289
2312
.
3.
Zhu
,
J.
,
Yang
,
J.
,
Zhang
,
W.
,
Gu
,
X.
, and
Zhou
,
H.
,
2023
, “
Design and Applications of Morphing Aircraft and Their Structures
,”
Front. Mech. Eng.
,
18
(
3
), p.
34
.
4.
Floreano
,
D.
,
Mintchev
,
S.
, and
Shintake
,
J.
,
2017
, “
Foldable Drones: From Biology to Technology
,”
Bioinspiration, Biomimetics, and Bioreplication 2017
,
Portland, OR
,
Mar. 25–29
,
International Society for Optics and Photonics
, Vol. 10162, p.
1016203
.
5.
Li
,
D.
,
Zhao
,
S.
,
Da Ronch
,
A.
,
Xiang
,
J.
,
Drofelnik
,
J.
,
Li
,
Y.
,
Zhang
,
L.
,
Wu
,
Y.
,
Kintscher
,
M.
,
Monner
,
H. P.
, et al.,
2018
, “
A Review of Modelling and Analysis of Morphing Wings
,”
Prog. Aerosp. Sci.
,
100
, pp.
46
62
.
6.
Falanga
,
D.
,
Kleber
,
K.
,
Mintchev
,
S.
,
Floreano
,
D.
, and
Scaramuzza
,
D.
,
2018
, “
The Foldable Drone: A Morphing Quadrotor That Can Squeeze and Fly
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
209
216
.
7.
Zhao
,
M.
,
Okada
,
K.
, and
Inaba
,
M.
,
2023
, “
Versatile Articulated Aerial Robot Dragon: Aerial Manipulation and Grasping by Vectorable Thrust Control
,”
Int. J. Robot. Res.
,
42
(
4–5
), pp.
214
248
.
8.
Gerber
,
M. J.
, and
Tsao
,
T.-C.
,
2018
, “
Twisting and Tilting Rotors for High-Efficiency, Thrust-Vectored Quadrotors
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061013
.
9.
Baskın
,
M.
, and
Leblebicioğlu
,
K.
,
2023
, “
Robust Attitude Controller Design for an Uncommon Quadrotor With Big and Small Tilt Rotors
,”
ASME J. Mech. Rob.
,
15
(
3
), p.
031003
.
10.
Zhang
,
X.
,
Kang
,
X.
, and
Li
,
B.
,
2023
, “
Origami-Inspired Design of a Single-Degree-of-Freedom Reconfigurable Wing With Lockable Mechanisms
,”
ASME J. Mech. Rob.
,
16
(
7
), p.
071008
.
11.
Morton
,
S.
, and
Papanikolopoulos
,
N.
,
2017
, “
A Small Hybrid Ground-Air Vehicle Concept
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
,
IEEE
, pp.
5149
5154
.
12.
Zufferey
,
R.
,
Ancel
,
A. O.
,
Raposo
,
C.
,
Armanini
,
S. F.
,
Farinha
,
A.
,
Siddall
,
R.
,
Berasaluce
,
I.
,
Zhu
,
H.
, and
Kovac
,
M.
,
2019
, “
Sailmav: Design and Implementation of a Novel Multi-modal Flying Sailing Robot
,”
IEEE Robot. Autom. Lett.
,
4
(
3
), pp.
2894
2901
.
13.
Tan
,
Y. H.
, and
Chen
,
B. M.
,
2020
, “
A Morphable Aerial-Aquatic Quadrotor With Coupled Symmetric Thrust Vectoring
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France (Online)
,
May 31–Aug. 31
,
IEEE
, pp.
2223
2229
.
14.
Ajaj
,
R. M.
,
Parancheerivilakkathil
,
M. S.
,
Amoozgar
,
M.
,
Friswell
,
M. I.
, and
Cantwell
,
W. J.
,
2021
, “
Recent Developments in the Aeroelasticity of Morphing Aircraft
,”
Prog. Aerosp. Sci.
,
120
, p.
100682
.
15.
Pham
,
N. K.
, and
Peraza Hernandez
,
E. A.
,
2021
, “
Modeling and Design Exploration of a Tensegrity-Based Twisting Wing
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031019
.
16.
Ang
,
K. Z.
,
Cui
,
J.
,
Pang
,
T.
,
Li
,
K.
,
Wang
,
K.
,
Ke
,
Y.
, and
Chen
,
B. M.
,
2014
, “
Development of an Unmanned Tail-Sitter With Reconfigurable Wings: U-lion
,”
11th IEEE International Conference on Control & Automation (ICCA)
,
Taichung, Taiwan
,
June 18–20
,
IEEE
, pp.
750
755
.
17.
Vourtsis
,
C.
,
Rochel
,
V. C.
,
Müller
,
N. S.
,
Stewart
,
W.
, and
Floreano
,
D.
,
2023
, “
Wind Defiant Morphing Drones
,”
Adv. Intell. Syst.
,
5
(
3
), p.
2200297
.
18.
Jeong
,
J.
,
Yoon
,
S.
,
Kim
,
S.-K.
, and
Suk
,
J.
,
2015
, “
Dynamic Modeling and Analysis of a Single Tilt-Wing Unmanned Aerial Vehicle
,”
AIAA Modeling and Simulation Technologies Conference
,
Dallas, TX
,
June 22–26
, p.
1804
.
19.
Sufiyan
,
D.
,
Win
,
L. S. T.
,
Win
,
S. K. H.
,
Pheh
,
Y. H.
,
Soh
,
G. S.
, and
Foong
,
S.
,
2023
, “
An Efficient Multimodal Nature-Inspired Unmanned Aerial Vehicle Capable of Agile Maneuvers
,”
Adv. Intell. Syst.
,
5
(
1
), p.
2200242
.
20.
Ajanic
,
E.
,
Feroskhan
,
M.
,
Mintchev
,
S.
,
Noca
,
F.
, and
Floreano
,
D.
,
2020
, “
Bioinspired Wing and Tail Morphing Extends Drone Flight Capabilities
,”
Sci. Robot.
,
5
(
47
), p.
eabc2897
.
21.
Xu
,
J.
,
Du
,
T.
,
Foshey
,
M.
,
Li
,
B.
,
Zhu
,
B.
,
Schulz
,
A.
, and
Matusik
,
W.
,
2019
, “
Learning to Fly: Computational Controller Design for Hybrid UAVs With Reinforcement Learning
,”
ACM Trans. Graph.
,
38
(
4
), pp.
1
12
.
22.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
23.
Odhner
,
L. U.
,
Jentoft
,
L. P.
,
Claffee
,
M. R.
,
Corson
,
N.
,
Tenzer
,
Y.
,
Ma
,
R. R.
,
Buehler
,
M.
,
Kohout
,
R.
,
Howe
,
R. D.
, and
Dollar
,
A. M.
,
2014
, “
A Compliant, Underactuated Hand for Robust Manipulation
,”
Int. J. Robot. Res.
,
33
(
5
), pp.
736
752
.
24.
Yin
,
A.
,
Lin
,
H.-C.
,
Thelen
,
J.
,
Mahner
,
B.
, and
Ranzani
,
T.
,
2019
, “
Combining Locomotion and Grasping Functionalities in Soft Robots
,”
Adv. Intell. Syst.
,
1
(
8
), p.
1900089
.
25.
Zhu
,
J.
,
Lyu
,
L.
,
Xu
,
Y.
,
Liang
,
H.
,
Zhang
,
X.
,
Ding
,
H.
, and
Wu
,
Z.
,
2021
, “
Intelligent Soft Surgical Robots for Next-Generation Minimally Invasive Surgery
,”
Adv. Intell. Syst.
,
3
(
5
), p.
2100011
.
26.
Goncalves
,
A.
,
Kuppuswamy
,
N.
,
Beaulieu
,
A.
,
Uttamchandani
,
A.
,
Tsui
,
K. M.
, and
Alspach
,
A.
,
2022
, “
Punyo-1: Soft Tactile-Sensing Upper-Body Robot for Large Object Manipulation and Physical Human Interaction
,”
2022 IEEE 5th International Conference on Soft Robotics (RoboSoft)
,
Edinburgh, Scotland
,
Apr. 4–8
,
IEEE
, pp.
844
851
.
27.
Bucki
,
N.
, and
Mueller
,
M. W.
,
2019
, “
Design and Control of a Passively Morphing Quadcopter
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
,
IEEE
, pp.
9116
9122
.
28.
Jia
,
H.
,
Bai
,
S.
, and
Chirarattananon
,
P.
,
2023
, “
Aerial Manipulation Via Modular Quadrotors With Passively Foldable Airframes
,”
IEEE/ASME Trans. Mechatron.
,
28
(
4
), pp.
1930
1938
.
29.
Tang
,
J.
,
Jain
,
K. P.
, and
Mueller
,
M. W.
,
2022
, “
Quartm: A Quadcopter With Unactuated Rotor Tilting Mechanism Capable of Faster, More Agile, and More Efficient Flight
,”
Front. Robot. AI
,
9
, p.
287
.
30.
Bai
,
S.
,
Ding
,
R.
, and
Chirarattananon
,
P.
,
2022
, “
A Micro Aircraft With Passive Variable-Sweep Wings
,”
IEEE Robot. Autom. Lett.
,
7
(
2
), pp.
4016
4023
.
31.
Sun
,
Y.
,
Wang
,
J.
, and
Sung
,
C.
,
2022
, “
Repeated Jumping With the REBOund: Self-righting Jumping Robot Leveraging Bistable Origami-Inspired Design
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
May 23–27
, pp.
7189
7195
.
32.
Misu
,
K.
,
Yoshii
,
A.
, and
Mochiyama
,
H.
,
2018
, “
A Compact Wheeled Robot That Can Jump While Rolling
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
,
IEEE
, pp.
7507
7512
.
33.
Kim
,
S.
,
Gribovskaya
,
E.
, and
Billard
,
A.
,
2010
, “
Learning Motion Dynamics to Catch a Moving Object
,”
2010 10th IEEE-RAS International Conference on Humanoid Robots
,
Nashville, TN
,
Dec. 6–8
,
IEEE
, pp.
106
111
.
34.
Pal
,
A.
,
Goswami
,
D.
, and
Martinez
,
R. V.
,
2020
, “
Elastic Energy Storage Enables Rapid and Programmable Actuation in Soft Machines
,”
Adv. Funct. Mater.
,
30
(
1
), p.
1906603
.
35.
Chen
,
T.
,
Bilal
,
O. R.
,
Shea
,
K.
, and
Daraio
,
C.
,
2018
, “
Harnessing Bistability for Directional Propulsion of Soft, Untethered Robots
,”
Proc. Natl. Acad. Sci. U.S.A.
,
115
(
22
), pp.
5698
5702
.
36.
Meng
,
L.
,
Kang
,
R.
,
Gan
,
D.
,
Chen
,
G.
,
Chen
,
L.
,
Branson
,
D. T.
, and
Dai
,
J. S.
,
2020
, “
A Mechanically Intelligent Crawling Robot Driven by Shape Memory Alloy and Compliant Bistable Mechanism
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061005
.
37.
Thuruthel
,
T. G.
,
Abidi
,
S. H.
,
Cianchetti
,
M.
,
Laschi
,
C.
, and
Falotico
,
E.
,
2020
, “
A Bistable Soft Gripper With Mechanically Embedded Sensing and Actuation for Fast Grasping
,”
2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)
,
Naples, Italy (Online)
,
Aug. 31–Sept. 4
,
IEEE
, pp.
1049
1054
.
38.
McWilliams
,
J.
,
Yuan
,
Y.
,
Friedman
,
J.
, and
Sung
,
C.
,
2021
, “
Push-On Push-Off: A Compliant Bistable Gripper With Mechanical Sensing and Actuation
,”
2021 IEEE 4th International Conference on Soft Robotics (RoboSoft)
,
New Haven, CT (Online)
,
May 15– July 15
,
IEEE
, pp.
622
629
.
39.
Zhang
,
H.
,
Sun
,
J.
, and
Zhao
,
J.
,
2019
, “
Compliant Bistable Gripper for Aerial Perching and Grasping
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
,
IEEE
, pp.
1248
1253
.
40.
Zheng
,
P.
,
Xiao
,
F.
,
Nguyen
,
P. H.
,
Farinha
,
A.
, and
Kovac
,
M.
,
2023
, “
Metamorphic Aerial Robot Capable of Mid-Air Shape Morphing for Rapid Perching
,”
Sci. Rep.
,
13
(
1
), p.
1297
.
41.
Carlson
,
J.
,
Friedman
,
J.
,
Kim
,
C.
, and
Sung
,
C.
,
2020
, “
Rebound: Untethered Origami Jumping Robot With Controllable Jump Height
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France (Online)
,
May 31–Aug. 31
,
IEEE
, pp.
10089
10095
.
42.
Currier
,
T. M.
,
Lheron
,
S.
, and
Modarres-Sadeghi
,
Y.
,
2020
, “
A Bio-inspired Robotic Fish Utilizes the Snap-Through Buckling of Its Spine to Generate Accelerations of More Than 20g
,”
Bioinspiration Biomimetics
,
15
(
5
), p.
055006
.
43.
Nguyen
,
P. H.
,
Patnaik
,
K.
,
Mishra
,
S.
,
Polygerinos
,
P.
, and
Zhang
,
W.
,
2023
, “
A Soft-Bodied Aerial Robot for Collision Resilience and Contact-Reactive Perching
,”
Soft Robot.
,
10
(
4
), pp.
838
851
.
44.
Ye
,
K.
, and
Ji
,
J.
,
2023
, “
A Novel Morphing Propeller System Inspired by Origami-Based Structure
,”
ASME J. Mech. Rob.
,
15
(
1
), p.
011006
.
45.
Liu
,
C.
,
Wohlever
,
S. J.
,
Ou
,
M. B.
,
Padir
,
T.
, and
Felton
,
S. M.
,
2021
, “
Shake and Take: Fast Transformation of an Origami Gripper
,”
IEEE Trans. Robot.
,
38
(
1
), pp.
491
506
.
46.
Li
,
X.
,
McWilliams
,
J.
,
Li
,
M.
,
Sung
,
C.
, and
Jiang
,
C.
,
2021
, “
Soft Hybrid Aerial Vehicle Via Bistable Mechanism
,”
2021 IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an, China (Online)
,
May 30–June 5
,
IEEE
, pp.
7107
7113
.
47.
Ryseck
,
P.
,
Jacobellis
,
G.
, and
Chopra
,
I.
,
2021
, “
Experimental Flight Testing of Wing Configurations for High-Speed Mini Quadrotor Biplane Tail-Sitter
,”
Vertical Flight Society 9th Biennial Autonomous VTOL Technical Meeting & 8th Annual Electric VTOL Symposium
,
Online
,
Jan. 26–28
.
48.
Li
,
Y.
,
Li
,
X.
,
Li
,
M.
,
Zhu
,
Y.
,
Zhu
,
B.
, and
Jiang
,
C.
,
2021
, “
Lagrangian-Eulerian Multi-density Topology Optimization With the Material Point Method
,”
Int. J. Numer. Methods Eng.
,
122
(
14
), pp.
3400
3424
.
49.
Chen
,
Q.
,
Zhang
,
X.
,
Zhang
,
H.
,
Zhu
,
B.
, and
Chen
,
B.
,
2019
, “
Topology Optimization of Bistable Mechanisms With Maximized Differences Between Switching Forces in Forward and Backward Direction
,”
Mech. Mach. Theory
,
139
, pp.
131
143
.
50.
Bonet
,
J.
, and
Wood
,
R. D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, England
.
51.
Wang
,
X.
,
Li
,
M.
,
Fang
,
Y.
,
Zhang
,
X.
,
Gao
,
M.
,
Tang
,
M.
,
Kaufman
,
D. M.
, and
Jiang
,
C.
,
2020
, “
Hierarchical Optimization Time Integration for CFL-Rate MPM Stepping
,”
ACM Trans. Graph.
,
39
(
3
), pp.
1
16
.
52.
Gast
,
T. F.
,
Schroeder
,
C.
,
Stomakhin
,
A.
,
Jiang
,
C.
, and
Teran
,
J. M.
,
2015
, “
Optimization Integrator for Large Time Steps
,”
IEEE Trans. Vis. Comput. Graph.
,
21
(
10
), pp.
1103
1115
.
53.
Li
,
M.
,
Gao
,
M.
,
Langlois
,
T.
,
Jiang
,
C.
, and
Kaufman
,
D. M.
,
2019
, “
Decomposed Optimization Time Integrator for Large-Step Elastodynamics
,”
ACM Trans. Graph.
,
38
(
4
), pp.
1
10
.
54.
Li
,
M.
,
Ferguson
,
Z.
,
Schneider
,
T.
,
Langlois
,
T.
,
Zorin
,
D.
,
Panozzo
,
D.
,
Jiang
,
C.
, and
Kaufman
,
D. M.
,
2020
, “
Incremental Potential Contact: Intersection- and Inversion-Free Large Deformation Dynamics
,”
ACM Trans. Graph.
,
39
(
4
), pp.
49:1
49:20
.
55.
Li
,
X.
,
Li
,
M.
, and
Jiang
,
C.
,
2022
, “
Energetically Consistent Inelasticity for Optimization Time Integration
,”
ACM Trans. Graph.
,
41
(
4
), Article No. 52, pp.
1
16
.
56.
Ducard
,
G. J.
, and
Allenspach
,
M.
,
2021
, “
Review of Designs and Flight Control Techniques of Hybrid and Convertible VTOL UAVs
,”
Aerosp. Sci. Technol.
,
118
, p.
107035
.
57.
Amandolese
,
X.
,
Michelin
,
S.
, and
Choquel
,
M.
,
2013
, “
Low Speed Flutter and Limit Cycle Oscillations of a Two-Degree-of-Freedom Flat Plate in a Wind Tunnel
,”
J. Fluids Struct.
,
43
, pp.
244
255
.
You do not currently have access to this content.