Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The 6-prismatic-spherical-universal (6-PSU) parallel robot is useful for high-accuracy positioning, where the motors are installed on the robot base and the moving parts of the robot have low inertia. A highly accurate kinematic model of the robot is fundamental for the control. The joint clearances of all limbs often exist and have a significant influence on kinematic model accuracy. In this study, an actuation acceleration information-based kinematic modeling and identification method for a 6-PSU parallel robot with joint clearances is proposed. The direction of the joint clearance is related to the direction of the force acted on the joint, which is determined by the acceleration of the prismatic actuator. The existence of joint clearances is equivalent to the link length change. The joint clearances are identified from the experiments and compensated. Simulations and experiments show that the proposed method is effective and improves the accuracy of the kinematic model.

References

1.
Meng
,
Z.
,
Cao
,
W.
,
Ding
,
H.
, and
Chen
,
Z.
,
2022
, “
A New Six Degree-of-Freedom Parallel Robot With Three Limbs for High-Speed Operations
,”
Mech. Mach. Theory
,
173
, p.
104875
.
2.
Tsai
,
C.-Y.
,
Yu
,
C.-P.
,
Yeh
,
P.-C.
, and
Lan
,
C.-C.
,
2022
, “
Parametric Joint Compliance Analysis of a 3-upu Parallel Robot
,”
Mech. Mach. Theory
,
170
, p.
104721
.
3.
Terrier
,
M.
,
Dugas
,
A.
, and
Hascoët
,
J.
,
2004
, “
Qualification of Parallel Kinematics Machines in High-Speed Milling on Free Form Surfaces
,”
Int. J. Mach. Tool. Manu.
,
44
(
7
), pp.
865
877
.
4.
Lurascu
,
C.
, and
Park
,
F.
,
2003
, “
Geometric Algorithms for Kinematic Calibration of Robots Containing Closed Loops
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
23
32
.
5.
Becquet
,
M.
,
1987
, “
Analysis of Flexibility Sources in Robot Structure
,”
IMACS/IFAC International Symposium on Modelling and Simulation of Distributed Parameter Systems
,
Hiroshima, Japan
,
Oct. 6–9
.
6.
Chen
,
J.
, and
Chao
,
L. M.
,
1986
, “
Positioning Error Analysis for Robot Manipulators With All Rotary Joints
,”
IEEE J. Robot. Automat.
,
3
(
6
), pp.
1011
1016
.
7.
Abderrahim
,
M.
, and
Whittaker
,
A.
,
2000
, “
Kinematic Model Identification of Industrial Manipulators
,”
Robot. Com-Int. Manuf.
,
16
(
1
), pp.
1
8
.
8.
Whitney
,
D.
,
Lozinski
,
C.
, and
Rourke
,
J.
,
1986
, “
Industrial Robot Forward Calibration Method and Results
,”
ASME J. Dyn. Sys., Meas. Control.
,
108
(
1
), pp.
1
8
.
9.
Zhang
,
S.
,
Wang
,
S.
,
Jing
,
F.
, and
Tan
,
M.
,
2019
, “
Parameter Estimation Survey for Multi-Joint Robot Dynamic Calibration Case Study
,”
Sci. China Inf. Sci.
,
62
(
10
), pp.
1
15
.
10.
Sun
,
T.
,
Lian
,
B.
,
Yang
,
S.
, and
Song
,
Y.
,
2020
, “
Kinematic Calibration of Serial and Parallel Robots Based on Finite and Instantaneous Screw Theory
,”
IEEE Trans. Robot.
,
36
(
3
), pp.
816
834
.
11.
Tan
,
H.
,
Hu
,
Y.
, and
Li
,
L.
,
2019
, “
Effect of Friction on the Dynamic Analysis of Slider-Crank Mechanism With Clearance Joint
,”
Int. J. Mech. Sci.
,
115
, pp.
20
40
.
12.
Zhao
,
Q.
,
Guo
,
J.
,
Hong
,
J.
, and
Liu
,
Z.
,
2019
, “
Analysis of Angular Errors of the Planar Multi-closed-Loop Deployable Mechanism With Link Deviations and Revolute Joint Clearances
,”
Aerosp. Sci. Tech.
,
87
, pp.
25
36
.
13.
Qian
,
M.
,
Qin
,
Z.
,
Yan
,
S.
, and
Zhang
,
L.
,
2020
, “
A Comprehensive Method for the Contact Detection of a Translational Clearance Joint and Dynamic Response After Its Application in a Crank-Slider Mechanism
,”
Mech. Mach. Theory
,
145
, p.
103717
.
14.
Li
,
Y.
,
Wang
,
C.
, and
Huang
,
W.
,
2019
, “
Rigid-Flexible-Thermal Analysis of Planar Composite Solar Array With Clearance Joint Considering Torsional Spring, Latch Mechanism and Attitude Controller
,”
Nonlinear Dyn.
,
96
, pp.
2031
2053
.
15.
Dhande
,
S.
, and
Chackraborty
,
J.
,
1978
, “
Mechanical Error Analysis of Spatial Linkages
,”
ASME J. Mech. Des.
,
100
(
4
), pp.
732
738
.
16.
Xu
,
W.
, and
Zhang
,
Q.
,
1989
, “
Probabilistic Analysis and Monte Carlo Simulation of the Kinematic Error in a Spatial Linkage
,”
Mech. Mach. Theory
,
24
(
1
), pp.
19
27
.
17.
Meng
,
J.
,
Zhang
,
D.
, and
Li
,
Z.
,
2009
, “
Accuracy Analysis of Parallel Manipulators With Joint Clearance
,”
ASME J. Mech. Des.
,
131
(
1
), p.
11013
.
18.
Chen
,
G.
,
Wang
,
H.
, and
Lin
,
Z.
,
2013
, “
A Unified Approach to the Accuracy Analysis of Planar Parallel Manipulators Both With Input Uncertainties and Joint Clearance
,”
Mech. Mach. Theory
,
64
, pp.
1
17
.
19.
Parenti-Castelli
,
V.
, and
Venanzi
,
S.
,
2005
, “
Clearance Influence Analysis on Mechanisms
,”
Mech. Mach. Theory
,
40
(
12
), pp.
1316
1329
.
20.
Ting
,
Kwun-Lon
,
Zhu
,
J.
, and
Watkins
,
D.
,
2000
, “
The Effects of Joint Clearance on Position and Orientation Deviation of Linkages and Manipulators
,”
Mech. Mach. Theory
,
35
(
3
), pp.
391
401
.
21.
Ting
,
Kwun-Lon
,
Hsu
,
K.-L.
, and
Wang
,
J.
,
2017
, “
Clearance-Induced Position Uncertainty of Planar Linkages and Parallel Manipulators
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061001
.
22.
Farajtabar
,
M.
,
Daniali
,
H.
, and
Varedi
,
S.
,
2017
, “
Pick and Place Trajectory Planning of Planar 3-rrr Parallel Manipulator in the Presence of Joint Clearance
,”
Robotica
,
35
(
2
), pp.
241
253
.
23.
Zhang
,
X.
, and
Liu
,
H.
,
2014
, “
A Clearance Approach of Kinematic Calibration and Error Compensation for 3-rrr Parallel Robot
,”
J. South China Univ. Technol. (Nat. Sci. Edition)
,
42
(
7
), pp.
97
103
.
24.
Roth
,
Z.
,
Mooring
,
B.
, and
Ravani
,
B.
,
1987
, “
An Overview of Robot Calibration
,”
IEEE J. Robot. Automat.
,
3
(
5
), pp.
377
385
.
25.
Su
,
H.
,
Qi
,
W.
,
Yang
,
C.
,
Sandoval
,
J.
,
Ferrigno
,
G.
, and
Momi
,
E. D.
,
2020
, “
Deep Neural Network Approach in Robot Tool Dynamics Identification for Bilateral Teleoperation
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
2943
2949
.
26.
Marie
,
S.
,
Courteille
,
E.
, and
Maurine
,
P.
,
2013
, “
Elasto-Geometrical Modeling and Calibration of Robot Manipulators: Application to Machining and Forming Applications
,”
Mech. Mach. Theory
,
69
, pp.
13
43
.
27.
Wu
,
R. T.
, and
Jahanshahi
,
M. R.
,
2019
, “
Deep Convolutional Neural Network for Structural Dynamic Response Estimation and System Identification
,”
J. Eng. Mech.
,
145
(
1
), pp.
1
25
.
28.
Yang
,
X.
,
Wu
,
L.
,
Li
,
J.
, and
Chen
,
K.
,
2014
, “
A Minimal Kinematic Model for Serial Robot Calibration Using Poe Formula
,”
Robot. Com-Int. Manuf.
,
30
(
3
), pp.
326
334
.
29.
Khalil
,
W.
, and
Besnard
,
S.
,
2002
, “
Geometric Calibration of Robots With Flexible Joints and Links
,”
J. Intell. Robot. Syst.
,
34
(
4
), pp.
357
379
.
30.
Lightcap
,
C.
,
Hamner
,
S.
,
Schmitz
,
T.
, and
Banks
,
S.
,
2008
, “
Improved Positioning Accuracy of the Pa10-6ce Robot With Geometric and Flexibility Calibration
,”
IEEE Trans. Robot.
,
24
(
2
), pp.
452
456
.
31.
Gao
,
M.
,
Li
,
T.
, and
Yin
,
W.
,
2003
, “
Calibration Method and Experiment of Stewart Platform Using a Laser Tracker
,”
IEEE International Conference on Systems, Man and Cybernetics
,
Washington, DC
,
October 08-08
.
32.
Zhuang
,
H.
,
Yan
,
J.
, and
Masory
,
O.
,
1998
, “
Calibration of Stewart Platforms and Other Parallel Manipulators by Minimizing Inverse Kinematic Residuals
,”
J. Robot. Syst.
,
15
(
7
), pp.
395
405
.
33.
Liu
,
S.
,
Wang
,
L.
, and
Wang
,
X. V.
,
2021
, “
Sensorless Force Estimation for Industrial Robots Using Disturbance Observer and Neural Learning of Friction Approximation
,”
Robot. Comput.-Integr. Manuf.
,
71
, pp.
1
11
.
34.
Hu
,
Y.
,
Gao
,
F.
,
Zhao
,
X.
,
Wei
,
B.
,
Zhao
,
D.
, and
Zhao
,
Y.
,
2018
, “
Kinematic Calibration of a 6-dof Parallel Manipulator Based on Identifiable Parameters Separation (ips)
,”
Mech. Mach. Theory
,
126
, pp.
61
78
.
You do not currently have access to this content.