Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Cross-axis flexural pivots are increasingly implemented in mechanical systems due to their high precision and wide range of motion. However, designing high-performance pivots in terms of low-axis drift, low rotational stiffness, and low values of maximum stress remains a challenging task. In fact, these features often behave antagonistically to each other. In this paper, the design of a novel family of high-performance cross-axis pivots is presented. The compliant joints are obtained by the composition of two crossing flexible elements with initially curved axis, and of one auxiliary flexure with straight axis. Two different arrangements, that depend on the constraints layout, are proposed. Chained beam constraint model and nonlinear finite element analysis are implemented for the analysis of the kinetostatic response of the pivots. The effects of initial curvature and orientation of the flexures on axis drift, stiffness, and maximum stress, are investigated and reported in the form of design maps. A global performance index, that embodies the above-mentioned features and captures the overall kinetostatic behavior of the pivot, is introduced. The design maps and the global index serve as key tools for the design procedure, giving insight into the antagonistic issue and leading to the determination of the best tradeoff solutions that meet the application requirements. An experimental campaign is conducted to compare the performance improvement of triple-axis pivots with respect to a benchmark double-axis joint, and to validate the design method.

References

1.
Hongzhe
,
Z.
,
Shusheng
,
B.
,
Jingjun
,
Y.
, and
Jun
,
G.
,
2012
, “
Design of a Family of Ultra-Precision Linear Motion Mechanisms
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041012
.
2.
Huo
,
T.
,
Yu
,
J.
, and
Zhao
,
H.
,
2020
, “
Design of a Kinematic Flexure Mount for Precision Instruments Based on Stiffness Characteristics of Flexural Pivot
,”
Mech. Mach. Theory
,
150
, p.
103868
.
3.
Hsenein
,
S.
,
Spanoudakis
,
P.
,
Droz
,
S.
,
Myklebust
,
L. I.
, and
Onillon
,
E.
,
2003
, “
Flexure Pivot for Aerospace Mechanisms
,”
10th European Space Mechanisms and Tribology Symposium
,
San Sebastian, Spain
,
Sept. 24–26
, pp.
285
288
.
4.
Merriam
,
E. G.
,
Jones
,
J. E.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Monolithic 2 DOF Fully Compliant Space Pointing Mechanism
,”
Mech. Sci.
,
4
(
2
), pp.
381
390
.
5.
Dearden
,
J.
,
Grames
,
C.
,
Orr
,
J.
,
Jensen
,
B. D.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
Cylindrical Cross-Axis Flexural Pivots
,”
Precis. Eng.
,
51
, pp.
604
613
.
6.
Martin
,
J.
, and
Robert
,
M.
,
2011
, “
Novel Flexible Pivot With Large Angular Range and Small Center Shift to Be Integrated Into a Bio-Inspired Robotic Hand
,”
J. Intell. Mater. Syst. Struct.
,
22
(
13
), pp.
1431
1437
.
7.
Bilancia
,
P.
,
Baggetta
,
M.
,
Berselli
,
G.
,
Bruzzone
,
L.
, and
Fanghella
,
P.
,
2021
, “
Design of a Bio-Inspired Contact-Aided Compliant Wrist
,”
Rob. Comput.-Integr. Manuf.
,
67
, p.
102028
.
8.
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2002
, “
The Modeling of Cross-Axis Flexural Pivots
,”
Mech. Mach. Theory
,
37
(
5
), pp.
461
476
.
9.
Morsch
,
F. M.
, and
Herder
,
J. L.
,
2010
, “
Design of a Generic Zero Stiffness Compliant Joint
,” International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol.
44106
, pp.
427
435
.
10.
Zhao
,
H.
,
Zhao
,
C.
,
Ren
,
S.
, and
Bi
,
S.
,
2019
, “
Analysis and Evaluation of a Near-Zero Stiffness Rotational Flexural Pivot
,”
Mech. Mach. Theory
,
135
, pp.
115
129
.
11.
Junior
,
L. G.
,
Theska
,
R.
,
Lepikson
,
H.
,
Junior
,
A. R.
,
Linß
,
S.
, and
Gräser
,
P.
,
2020
, “
Theoretical and Experimental Investigation of Performance Characteristics and Design Aspects of Cross-Spring Pivots
,”
Int. J. Solids Struct.
,
185–186
, pp.
240
256
.
12.
Gómez
,
J. F.
,
Booker
,
J. D.
, and
Mellor
,
P. H.
,
2015
, “
2D Shape Optimization of Leaf-Type Crossed Flexure Pivot Springs for Minimum Stress
,”
Precis. Eng.
,
42
, pp.
6
21
.
13.
Marković
,
K.
, and
Zelenika
,
S.
,
2017
, “
Optimized Cross-Spring Pivot Configurations With Minimized Parasitic Shifts and Stiffness Variations Investigated Via Nonlinear Fea
,”
Mech. Based Des. Struct. Mach.
,
45
(
3
), pp.
380
394
.
14.
Hongzhe
,
Z.
, and
Shusheng
,
B.
,
2010
, “
Accuracy Characteristics of the Generalized Cross-Spring Pivot
,”
Mech. Mach. Theory
,
45
(
10
), pp.
1434
1448
.
15.
Bilancia
,
P.
,
Baggetta
,
M.
,
Hao
,
G.
, and
Berselli
,
G.
,
2021
, “
A Variable Section Beams Based Bi-BCM Formulation for the Kinetostatic Analysis of Cross-Axis Flexural Pivots
,”
Int. J. Mech. Sci.
,
205
, p.
106587
.
16.
Serafino
,
S.
,
Fanghella
,
P.
, and
Verotti
,
M.
,
2022
, “
Initial Curvature and Centroid Positioning Effects on Cross-Axis Flexural Pivots Accuracy
,”
Mech. Mach. Theory
,
177
, p.
105039
.
17.
Serafino
,
S.
,
Fanghella
,
P.
, and
Verotti
,
M.
,
2023
, “
Design and Testing of High-Accuracy Curved Cross-Axis Flexural Pivots With Cable-Driven Actuation
,”
Mech. Mach. Theory
,
189
, p.
105418
.
18.
Liu
,
L.
,
Bi
,
S.
,
Yang
,
Q.
, and
Wang
,
Y.
,
2014
, “
Design and Experiment of Generalized Triple-Cross-Spring Flexure Pivots Applied to the Ultra-Precision Instruments
,”
Rev. Sci. Instrum.
,
85
(
10
), p.
105102
.
19.
Thalmann
,
E.
, and
Henein
,
S.
,
2022
, “
Triple Crossed Flexure Pivot Based on a Zero Parasitic Center Shift Kinematic Design
,”
ASME J. Mech. Rob.
,
14
(
4
), p.
045001
.
20.
Machekposhti
,
D. F.
,
Tolou
,
N.
, and
Herder
,
J. L.
,
2015
, “
A Review on Compliant Joints and Rigid-Body Constant Velocity Universal Joints Toward the Design of Compliant Homokinetic Couplings
,”
ASME J. Mech. Des.
,
137
(
3
), p.
032301
. doi.org/10.1115/1.4029318
21.
Trease
,
B. P.
,
Moon
,
Y. -M.
, and
Kota
,
S.
,
2004
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
798
.
22.
Xu
,
P.
,
Jingjun
,
Y.
,
Guanghua
,
Z.
,
Shusheng
,
B.
, and
Zhiwei
,
Y.
,
2008
, “
Analysis of Rotational Precision for an Isosceles-Trapezoidal Flexural Pivot
,”
ASME J. Mech. Des.
,
130
(
5
), p.
052302
.
23.
Verotti
,
M.
,
Serafino
,
S.
, and
Fanghella
,
P.
,
2023
, “
Position Accuracy Criteria for Planar Flexural Hinges
,”
Precis. Eng.
,
80
, pp.
82
94
.
24.
Ma
,
F.
, and
Chen
,
G.
,
2015
, “
Modeling Large Planar Deflections of Flexible Beams in Compliant Mechanisms Using Chained Beam-Constraint-Model
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021018
.
You do not currently have access to this content.