Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Remote center-of-motion (RCM) mechanisms provide a way for surgical instruments to pass through a remote center (e.g., skin incision) under geometrical constraints, facilitating safer operations in minimally invasive surgery (MIS). One rotation and one translation (1R1T, pitch and insertion) are the basic requirements for RCM mechanisms. To make the structure simpler and control easier, a novel concept of 1R1T RCM mechanisms with partially decoupled motions, inspired by the double-parallelogram 1R RCM mechanisms, is proposed in this article, by investigating and proving its motion combination principle based on the screw theory. New evolution procedures based on the configuration evolution method have been derived to design 1R1T RCM mechanisms based on two approaches of inserting the T-motion in an original 1R RCM mechanism, resulting in two types of 1R1T RCM mechanisms with partially decoupled motions and base-locating actuators. The kinematic models of one typical proposed mechanism (including the forward and inverse kinematics) and its Jacobian matrix are derived. The performance analysis is presented, including RCM validation, velocity, singularity, and workspace analysis. Then, the dimensional optimization based on the discrete solution method is derived. Finally, a prototype of the proposed mechanism is presented with preliminary experiments performed to verify the feasibility of the synthesized RCM mechanisms. The results show that the RCM mechanism performs the 1R1T partially decoupled motion, and it can be used as the basic element of an active manipulator of an MIS robot.

References

1.
Kuo
,
C.-H.
,
Dai
,
J. S.
, and
Dasgupta
,
P.
,
2012
, “
Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview
,”
Int. J. Med. Rob. Comput. Assist. Surg.
,
8
(
2
), pp.
127
145
.
2.
Tinelli
,
R.
,
Litta
,
P.
,
Meir
,
Y.
,
Surico
,
D.
,
Leo
,
L.
,
Fusco
,
A.
,
Angioni
,
S.
, and
Cicinelli
,
E.
,
2014
, “
Advantages of Laparoscopy Versus Laparotomy in Extremely Obese Women (BMI>35) With Early-Stage Endometrial Cancer: A Multicenter Study
,”
Anticancer. Res.
,
34
(
5
), pp.
2497
2502
.
3.
Peters
,
J. H.
,
Gibbons
,
G.
,
Innes
,
J.
,
Nichols
,
K.
,
Front
,
M. E.
,
Roby
,
S.
, and
Ellison
,
E.
,
1991
, “
Complications of Laparoscopic Cholecystectomy
,”
Surgery
,
110
(
4
), pp.
769
77
.
4.
Haber
,
G.-P.
,
White
,
M. A.
,
Autorino
,
R.
,
Escobar
,
P. F.
,
Kroh
,
M. D.
,
Chalikonda
,
S.
,
Khanna
,
R.
,
Forest
,
S.
,
Yang
,
B.
,
Altunrende
,
F.
,
Stein
,
R. J.
, and
Kaouk
,
J. H.
,
2010
, “
Novel Robotic Da Vinci Instruments for Laparoendoscopic Single-Site Surgery
,”
Urology
,
76
(
6
), pp.
1279
1282
.
5.
Cao
,
W.-a.
,
Xu
,
S.-j.
,
Rao
,
K.
, and
Ding
,
T.
,
2019
, “
Kinematic Design of a Novel Two Degree-of-Freedom Parallel Mechanism for Minimally Invasive Surgery
,”
ASME J. Mech. Des.
,
141
(
10
), p.
104501
.
6.
Li
,
J.
,
Xing
,
Y.
,
Liang
,
K.
, and
Wang
,
S.
,
2015
, “
Kinematic Design of a Novel Spatial Remote Center-of-Motion Mechanism for Minimally Invasive Surgical Robot
,”
ASME J. Med. Devices.
,
9
(
1
), p.
011003
.
7.
Li
,
J.
,
Wang
,
J.
,
Zhao
,
J.
, and
Wei
,
G.
,
2024
, “
Design, Dimensional Synthesis and Evaluation of a Novel Two-Degrees-of-Freedom Spherical Remote Center of Motion Mechanism for Minimally Invasive Surgery
,”
ASME J. Mech. Rob.
,
16
(
5
), p.
051005
.
8.
He
,
Y.
,
Zhang
,
P.
,
Jin
,
H.
,
Hu
,
Y.
, and
Zhang
,
J.
,
2016
, “
Type Synthesis for Remote Center of Motion Mechanisms Based on Coupled Motion of Two Degrees-of-Freedom
,”
ASME J. Mech. Des.
,
138
(
12
), p.
122301
.
9.
Gijbels
,
A.
,
Reynaerts
,
D.
, and
Vander Poorten
,
E.
,
2014
, “Design of 4-DOF Parallelogram-Based RCM Mechanisms With a Translational DOF Implemented Distal From the End-Effector,”
Advances on Theory and Practice of Robots and Manipulators
,
M.
Ceccarelli
and
V. A.
Glazunov
, eds.,
Springer
,
Shanghai, China
, pp.
103
111
.
10.
Gijbels
,
A.
,
Wouters
,
N.
,
Stalmans
,
P.
,
Van Brussel
,
H.
,
Reynaerts
,
D.
, and
Vander Poorten
,
E.
,
2013
, “
Design and Realisation of a Novel Robotic Manipulator for Retinal Surgery
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
,
IEEE
, pp.
3598
3603
.
11.
Long
,
H.
,
Yang
,
Y.
,
Jingjing
,
X.
, and
Peng
,
S.
,
2016
, “
Type Synthesis of 1R1T Remote Center of Motion Mechanisms Based on Pantograph Mechanisms
,”
ASME J. Mech. Des.
,
138
(
1
), p.
014501
.
12.
Li
,
J.
,
Zhang
,
G.
,
Xing
,
Y.
,
Liu
,
H.
, and
Wang
,
S.
,
2014
, “
A Class of 2-Degree-of-Freedom Planar Remote Center-of-Motion Mechanisms Based on Virtual Parallelograms
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031014
.
13.
Nisar
,
S.
,
Endo
,
T.
, and
Matsuno
,
F.
,
2017
, “
Design and Kinematic Optimization of a Two Degrees-of-Freedom Planar Remote Center of Motion Mechanism for Minimally Invasive Surgery Manipulators
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031013
.
14.
Nisar
,
S.
,
Endo
,
T.
, and
Matsuno
,
F.
,
2018
, “
Design and Optimization of a 2-Degree-of-Freedom Planar Remote Center of Motion Mechanism for Surgical Manipulators With Smaller Footprint
,”
ASME Mech. Mach. Theory.
,
129
, pp.
148
161
.
15.
Chen
,
G.
,
Wang
,
J.
, and
Wang
,
H.
,
2019
, “
A New Type of Planar Two Degree-of-Freedom Remote Center-of-Motion Mechanism Inspired by the Peaucellier–Lipkin Straight-Line Linkage
,”
ASME J. Mech. Des.
,
141
(
1
), p.
015001
.
16.
Chen
,
G.
,
Xun
,
Y.
,
Chai
,
Y.
,
Yao
,
S.
,
Chen
,
C.
, and
Wang
,
H.
,
2021
, “
Design and Validation of a Novel Planar 2R1T Remote Center-of-Motion Mechanism Composing of Dual-Triangular and Straight-Line Linkages
,”
ASME J. Mech. Rob.
,
13
(
3
), pp.
1
11
.
17.
Ye
,
W.
,
Zhang
,
B.
, and
Li
,
Q.
,
2020
, “
Design of a 1R1T Planar Mechanism With Remote Center of Motion
,”
Mech. Mach. Theory.
,
149
, p.
103845
.
18.
Smits
,
J.
,
Reynaerts
,
D.
, and
Vander Poorten
,
E.
,
2020
, “
Synthesis and Methodology for Optimal Design of a Parallel Remote Center of Motion Mechanism: Application to Robotic Eye Surgery
,”
Mech. Mach. Theory.
,
151
, p.
103896
.
19.
He
,
C.-Y.
,
Huang
,
L.
,
Yang
,
Y.
,
Liang
,
Q.-F.
, and
Li
,
Y.-K.
,
2018
, “
Research and Realization of a Master-Slave Robotic System for Retinal Vascular Bypass Surgery
,”
Chin. J. Mech. Eng.
,
31
(
1
), pp.
1
10
.
20.
Li
,
J.
,
Zhang
,
G.
,
Müller
,
A.
, and
Wang
,
S.
,
2013
, “
A Family of Remote Center of Motion Mechanisms Based on Intersecting Motion Planes
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091009
.
21.
Duan
,
Y.
,
Ling
,
J.
,
Feng
,
Z.
,
Yao
,
D.
, and
Zhu
,
Y.
,
2024
, “
Development of a Base-Actuated Three-Rhombus Configured Remote Center of Motion Mechanism for Lumbar Puncture
,”
ASME J. Mech. Rob.
,
16
(
5
), p.
054503
.
22.
Kuo
,
C.-H.
, and
Dai
,
J. S.
,
2012
, “
Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery
,”
ASME J. Med. Devices.
,
6
(
2
), p.
021008
.
23.
Zong
,
G.
,
Pei
,
X.
,
Yu
,
J.
, and
Bi
,
S.
,
2008
, “
Classification and Type Synthesis of 1-DOF Remote Center of Motion Mechanisms
,”
Mech. Mach. Theory.
,
43
(
12
), pp.
1585
1595
.
24.
Dai
,
J. S.
, and
Sun
,
J.
,
2020
, “
Geometrical Revelation of Correlated Characteristics of the Ray and Axis Order of the Plücker Coordinates in Line Geometry
,”
Mech. Mach. Theory.
,
153
, p.
103983
.
25.
Fan
,
C.
,
Liu
,
H.
, and
Zhang
,
Y.
,
2013
, “
Type Synthesis of 2T2R, 1T2R and 2R Parallel Mechanisms
,”
Mech. Mach. Theory.
,
61
, pp.
184
190
.
26.
Lin
,
R.
,
Guo
,
W.
, and
Li
,
M.
,
2018
, “
Novel Design of Legged Mobile Landers With Decoupled Landing and Walking Functions Containing a Rhombus Joint
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061017
.
27.
Stoianovici
,
D.
,
Jun
,
C.
,
Lim
,
S.
,
Li
,
P.
,
Petrisor
,
D.
,
Fricke
,
S.
,
Sharma
,
K.
, and
Cleary
,
K.
,
2018
, “
Multi-Imager Compatible, MR Safe, Remote Center of Motion Needle-Guide Robot
,”
IEEE Trans. Biomed. Eng.
,
65
(
1
), pp.
165
177
.
28.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
.
29.
Lin
,
R.
,
Guo
,
W.
, and
Cheng
,
S. S.
,
2022
, “
Type Synthesis of 2R1T Remote Center of Motion Parallel Mechanisms With a Passive Limb for Minimally Invasive Surgical Robot
,”
Mech. Mach. Theory.
,
172
, p.
104766
.
30.
Brahmia
,
A.
,
Kelaiaia
,
R.
,
Chemori
,
A.
, and
Company
,
O.
,
2022
, “
On Robust Mechanical Design of a PAR2 Delta-Like Parallel Kinematic Manipulator
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011001
.
31.
Brahmia
,
A.
,
Kelaiaia
,
R.
,
Company
,
O.
, and
Chemori
,
A.
,
2022
, “
Kinematic Sensitivity Analysis of Manipulators Using a Novel Dimensionless Index
,”
Rob. Auton. Syst.
,
150
, p.
104021
.
32.
Kelaiaia
,
R.
,
Chemori
,
A.
,
Brahmia
,
A.
,
Kerboua
,
A.
,
Zaatri
,
A.
, and
Company
,
O.
,
2023
, “
Optimal Dimensional Design of Parallel Manipulators With an Illustrative Case Study: A Review
,”
Mech. Mach. Theory.
,
188
, p.
105390
.
33.
Rosen
,
J.
,
Brown
,
J. D.
,
Chang
,
L.
,
Barreca
,
M.
,
Sinanan
,
M.
, and
Hannaford
,
B.
,
2002
, “
The Bluedragon—A System for Measuring the Kinematics and Dynamics of Minimally Invasive Surgical Tools In-Vivo
,”
Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292)
,,
Washington, DC
,
May 11–15
, Vol.
2
,
IEEE
, pp.
1876
1881
.
34.
Lum
,
M. J.
,
Rosen
,
J.
,
Sinanan
,
M. N.
, and
Hannaford
,
B.
,
2006
, “
Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot: Theoretical and Experimental Approaches
,”
IEEE Trans. Biomed. Eng.
,
53
(
7
), pp.
1440
1445
.
35.
van den Bedem
,
L. J. M.
,
2010
, “
Realization of a Demostrator Slave for Robotic Minimally Invasive Surgery
,” PhD thesis,
Technische Universiteit Eindhoven
,
Eindhoven
.
You do not currently have access to this content.