Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

We developed a small jumping mechanism inspired by planthopper. The planthopper jump is characterized by two functions of the hind legs; the leg synchronization using physical contact of the trochanter head and the power amplification using a torque reversal latch. The proposed jump mechanism adopts the unique leg synchronization strategy of the planthopper, and the nymphal and adult models of the hind legs are designed. However, the power amplification is modified to incorporate two torque reversal structures in a single-motion axis. The mechanisms were fabricated by 3D printer with polylactic acid (PLA) material and equipped with extension springs. They weighed 26 g and performed 260 cm vertical jump within one rotation in the frontal plane. The jump height is over 40 times greater than the body length. The experimental findings indicate that the precise synchronization of the rapid leg movement is an effective approach for the design of a jumping mechanism.

References

1.
Gronenberg
,
W.
,
1996
, “
Fast Actions in Small Animals: Springs and Click Mechanisms
,”
J. Comp. Physiol. A
,
178
(
6
), pp.
727
734
.
2.
Ilton
,
M.
,
Saad Bhamla
,
M.
,
Ma
,
X.
,
Cox
,
S. M.
,
Fitchett
,
L. L.
,
Kim
,
Y.
,
Krishnamurthy
,
D.
,
Kuo
,
C. Y.
,
Temel
,
F. Z.
,
Crosby
,
A. J.
,
Prakash
,
M.
,
Sutton
,
G. P.
,
Wood
,
R. J.
,
Azizi
,
E.
,
Bergbreiter
,
S.
, and
Patek
,
S. N.
,
2018
, “
The Principles of Cascading Power Limits in Small, Fast Biological and Engineered Systems
,”
Science
,
360
(
6387
), pp.
1
11
.
3.
Longo
,
S. J.
,
Cox
,
S. M.
,
Azizi
,
E.
,
Ilton
,
M.
,
Olberding
,
J. P.
,
St Pierre
,
R.
, and
Patek
,
S. N.
,
2019
, “
Beyond Power Amplification: Latch-Mediated Spring Actuation Is an Emerging Framework for the Study of Diverse Elastic Systems
,”
J. Exp. Biol.
,
222
(
15
), pp.
1
10
.
4.
Burgess
,
S.
,
2021
, “
A Review of Linkage Mechanisms in Animal Joints and Related Bioinspired Designs
,”
Bioinspir. Biomim.
,
16
(
4
), pp.
1
15
.
5.
Haldane
,
D. W.
,
Plecnik
,
M. M.
,
Yim
,
J. K.
, and
Fearing
,
R. S.
,
2016
, “
Robotic Vertical Jumping Agility Via Series-Elastic Power Modulation
,”
Sci. Rob.
,
1
(
1
), pp.
1
9
.
6.
Bennet-Clark
,
H. C.
,
1975
, “
The Energetics of the Jump of the Locust Schistocerca gregaria
,”
J. Exp. Biol.
,
63
(
1
), pp.
53
83
.
7.
Burrows
,
M.
, and
Morris
,
G.
,
2001
, “
The Kinematics and Neural Control of High-Speed Kicking Movements in the Locust
,”
J. Exp. Biol.
,
204
(
20
), pp.
3471
3481
.
8.
Zaitsev
,
V.
,
Gvirsman
,
O.
,
Ben Hanan
,
U.
,
Weiss
,
A.
,
Ayali
,
A.
, and
Kosa
,
G.
,
2015
, “
Locust-Inspired Miniature Jumping Robot
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
,
IEEE
, pp.
553
558
.
9.
Kovac
,
M.
,
Fuchs
,
M.
,
Guignard
,
A.
,
Zufferey
,
J.-C.
, and
Floreano
,
D.
,
2008
, “
A Miniature 7G Jumping Robot
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
,
IEEE
, pp.
373
378
.
10.
Bennet-Clark
,
H. C.
, and
Lucey
,
E. C. A.
,
1967
, “
The Jump of the Flea: A Study of the Energetics and a Model of the Mechanism
,”
J. Exp. Biol.
,
47
(
1
), pp.
59
76
.
11.
Koh
,
J.-S.
,
Jung
,
S.-P.
,
Noh
,
M.
,
Kim
,
S.-W.
, and
Cho
,
K.-J.
,
2013
, “
Flea Inspired Catapult Mechanism With Active Energy Storage and Release for Small Scale Jumping Robot
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
,
IEEE
, pp.
26
31
.
12.
Koh
,
J.-S.
,
Yang
,
E.
,
Jung
,
G.-P.
,
Jung
,
S.-P.
,
Son
,
J. H.
,
Lee
,
S.-I.
,
Jablonski
,
P. G.
,
Wood
,
R. J.
,
Kim
,
H.-Y.
, and
Cho
,
K.-J.
,
2015
, “
Jumping on Water: Surface Tension-Dominated Jumping of Water Striders and Robotic Insects
,”
Science
,
349
(
6247
), pp.
517
521
.
13.
Mo
,
X.
,
Ge
,
W.
,
Ren
,
Y.
,
Zhao
,
D.
,
Wei
,
D.
, and
Romano
,
D.
,
2024
, “
Locust-Inspired Jumping Mechanism Design and Improvement Based on Takeoff Stability
,”
ASME J. Mech. Rob.
,
16
(
6
), p.
061013
.
14.
Burrows
,
M.
,
2007
, “
Anatomy of the Hind Legs and Actions of Their Muscles During Jumping in Leafhopper Insects
,”
J. Exp. Biol.
,
210
(
20
), pp.
3590
3600
.
15.
Burrows
,
M.
,
Shaw
,
S. R.
, and
Sutton
,
G. P.
,
2008
, “
Resilin and Chitinous Cuticle Form a Composite Structure for Energy Storage in Jumping by Froghopper Insects
,”
BMC Biol.
,
6
(
41
), pp.
1
16
.
16.
Burrows
,
M.
,
2006
, “
Jumping Performance of Froghopper Insects
,”
J. Exp. Biol.
,
209
(
23
), pp.
4607
4621
.
17.
Burrows
,
M.
,
2009
, “
Jumping Performance of Planthoppers (Hemiptera, Issidae)
,”
J. Exp. Biol.
,
212
(
17
), pp.
2844
2855
.
18.
Burrows
,
M.
, and
Bräunig
,
P.
,
2010
, “
Actions of Motor Neurons and Leg Muscles in Jumping by Planthopper Insects (Hemiptera, Issidae)
,”
J. Comp. Neurol.
,
518
(
8
), pp.
1349
1369
.
19.
Burrows
,
M.
,
2010
, “
Energy Storage and Synchronisation of Hind Leg Movements During Jumping in Planthopper Insects (Hemiptera, Lssidae)
,”
J. Exp. Biol.
,
213
(
3
), pp.
469
478
.
20.
Patek
,
S. N.
,
Baio
,
J. E.
,
Fisher
,
B. L.
, and
Suarez
,
A. V.
,
2006
, “
Multifunctionality and Mechanical Origins: Ballistic Jaw Propulsion in Trap-Jaw Ants
,”
Proc. Natl. Acad. Sci. USA
,
103
(
34
), pp.
12787
12792
.
21.
Larabee
,
F. J.
,
Gronenberg
,
W.
, and
Suarez
,
A. V.
,
2017
, “
Performance, Morphology and Control of Power-Amplified Mandibles in the Trap-Jaw Ant Myrmoteras (Hymenoptera: Formicidae)
,”
J. Exp. Biol.
,
220
(
17
), pp.
3062
3071
.
22.
Zhakypov
,
Z.
,
Mori
,
K.
,
Hosoda
,
K.
, and
Paik
,
J.
,
2019
, “
Designing Minimal and Scalable Insect-Inspired Multi-Locomotion Millirobots
,”
Nature
,
571
(
7765
), pp.
381
386
.
23.
Bolmin
,
O.
,
Socha
,
J. J.
,
Alleyne
,
M.
,
Dunn
,
A. C.
,
Fezzaa
,
K.
, and
Wissa
,
A. A.
,
2021
, “
Nonlinear Elasticity and Damping Govern Ultrafast Dynamics in Click Beetles
,”
Proc. Natl. Acad. Sci. USA
,
118
(
5
), pp.
1
8
.
24.
Kurniawan
,
R.
,
Fukudome
,
T.
,
Qiu
,
H.
,
Takamiya
,
M.
,
Kawahara
,
Y.
,
Yang
,
J.
, and
Niiyama
,
R.
,
2020
, “
An Untethered 216-mg Insect-Sized Jumping Robot With Wireless Power Transmission
,” 2
020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 25–29
,
IEEE
, pp.
7881
7886
.
25.
Burrows
,
M.
, and
Sutton
,
G.
,
2013
, “
Interacting Gears Synchronize Propulsive Leg Movements in a Jumping Insect
,”
Science
,
341
(
6151
), pp.
1254
1256
.
26.
Tajima
,
K.
,
Yagi
,
K.
, and
Mori
,
Y.
,
2023
, “
Development of an Impulsive Motion Generator Inspired by Cocking Slip Joint of Snapping Shrimp
,”
Bioinspir. Biomim.
,
18
(
6
), pp.
1
14
.
27.
Kaji
,
T.
,
Anker
,
A.
,
Wirkner
,
C. S.
, and
Palmer
,
A. R.
,
2018
, “
Parallel Saltational Evolution of Ultrafast Movements in Snapping Shrimp Claws
,”
Curr. Biol.
,
28
(
1
), pp.
106
113
.
You do not currently have access to this content.