Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

This article introduces a novel quadrupedal hybrid mobile robot with a segmented omni wheel design capable of climbing obstacles of height greater than its wheel radius. The unique wheel design comprises two parallel coaxial 240-deg segmented omni wheels per leg with independent offset angle control. The transformation from wheel to leg mode and vice versa can be seamlessly achieved by controlling the offset angle between the segmented omni wheels. A series of experiments are carried out to evaluate the robot's performance for obstacle climbing capability utilizing various wheel end effector designs, and a comparative analysis is presented. The results indicate that the obstacle climbing capability of segmented omni wheel design with zero offset angle is improved by 40.7% compared to standard wheel, and the unique wheel design configuration facilitates seamless staircase climbing capability without any complex control scheme. In addition, statistical studies using the Taguchi method and analysis of variance (ANOVA) are performed on the experimental findings. A linear regression model to predict power consumption has been developed, and the significant factors influencing the robot's power consumption and stability are presented.

References

1.
Siegwart
,
R.
,
Nourbakhsh
,
I. R.
, and
Scaramuzza
,
D.
,
2011
,
Introduction to Autonomous Mobile Robots
, Second ed., Vol.
23
,
The MIT Press
,
Cambridge, MA
.
2.
She
,
Y.
,
Hurd
,
C. J.
, and
Su
,
H. J.
,
2015
, “
A Transformable Wheel Robot With a Passive Leg
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
4165
4170
.
3.
Xie
,
X.
,
Gao
,
F.
,
Huang
,
C.
, and
Zeng
,
W.
,
2017
, “
Design and Development of a New Transformable Wheel Used in Amphibious All-Terrain Vehicles (A-ATV)
,”
J. Terramech.
,
69
, pp.
45
61
.
4.
Tadakuma
,
K.
,
Tadakuma
,
R.
,
Maruyama
,
A.
,
Rohmer
,
E.
,
Nagatani
,
K.
,
Yoshida
,
K.
,
Ming
,
A.
, et al
,
2009
, “
Armadillo-Inspired Wheel-Leg Retractable Module
,”
2009 IEEE International Conference on Robotics and Biomimetics, ROBIO 2009
,
Guilin, China
,
Dec. 19–23
, pp.
610
615
.
5.
Michaud
,
F.
,
Létourneau
,
D.
,
Arsenault
,
M.
,
Bergeron
,
Y.
,
Cadrin
,
R.
,
Gagnon
,
F.
,
Legault
,
M.-A.
, et al
,
2005
, “
Multi-Modal Locomotion Robotic Platform Using leg-Track-Wheel Articulations
,”
Auton. Rob.
,
18
(
2
), pp.
137
156
.
6.
Smith
,
J. A.
,
Sharf
,
I.
, and
Trentini
,
M.
,
2006
, “
Bounding Gait in a Hybrid Wheeled-Leg Robot
,”
IEEE International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
, pp.
5750
5755
.
7.
Endo
,
G.
, and
Hirose
,
S.
,
2000
, “
Study on Roller-Walker—Multi-Mode Steering Control and Self-Contained Locomotion
,”
J. Robot. Mechatron.
,
12
(
5
), pp.
559
566
.
8.
Hou
,
F.
,
Yuan
,
J.
,
Li
,
K.
, and
Wang
,
Z.
,
2023
, “
Design and Analysis of a Multi-Configuration Wheel-Leg Hybrid Drive Robot Machine
,”
Int. J. Adv. Robot. Syst.
,
20
(
2
), pp.
1
10
.
9.
Russo
,
M.
, and
Ceccarelli
,
M.
,
2020
, “
Survey on Mechanical Solutions for Hybrid Mobile Robots
,”
Robotics
,
9
(
2
), p.
32
.
10.
Laney
,
D
, and
Hong
,
D
,
2005
, “
Kinematic Analysis of a Novel Rimless Wheel With Independently Actuated Spokes.
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Long Beach, CA
,
Sept. 24–28
, ASME, pp.
609
-
614
.
11.
Endo
,
G.
, and
Hirose
,
S.
,
1998
, “
Leg-Wheel Hybrid Walking Vehicle (Roller-Walker)
,”
Adv. Robot.
,
13
(
3
), pp.
241
242
.
12.
Geilinger
,
M.
,
Winberg
,
S.
, and
Coros
,
S.
,
2020
, “
A Computational Framework for Designing Skilled Legged-Wheeled Robots
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
3674
3681
.
13.
De Viragh
,
Y.
,
Bjelonic
,
M.
,
Bellicoso
,
C. D.
,
Jenelten
,
F.
, and
Hutter
,
M.
,
2019
, “
Trajectory Optimization for Wheeled-Legged Quadrupedal Robots Using Linearized ZMP Constraints
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
1633
1640
.
14.
Bjelonic
,
M.
,
Bellicoso
,
C. D.
,
De Viragh
,
Y.
,
Sako
,
D.
,
Tresoldi
,
F. D.
,
Jenelten
,
F.
, and
Hutter
,
M.
,
2019
, “
Keep Rollin’-Whole-Body Motion Control and Planning for Wheeled Quadrupedal Robots
,”
IEEE Robot. Autom. Lett.
,
4
(
2
), pp.
2116
2123
.
15.
Bjelonic
,
M.
,
Bellicoso
,
C. D.
,
Tiryaki
,
M. E.
, and
Hutter
,
M.
,
2018
, “
Skating With a Force Controlled Quadrupedal Robot
,”
IEEE International Conference on Intelligent Robots and Systems
,
Madrid, Spain
,
Oct. 1–5
, pp.
7555
7561
.
16.
Bjelonic
,
M.
,
Sankar
,
P. K.
,
Bellicoso
,
C. D.
,
Vallery
,
H.
, and
Hutter
,
M.
,
2020
, “
Rolling in the Deep—Hybrid Locomotion for Wheeled-Legged Robots Using Online Trajectory Optimization
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
3626
3633
.
17.
Zhou
,
Q.
,
Yang
,
S.
,
Jiang
,
X.
,
Zhang
,
D.
,
Chi
,
W.
,
Chen
,
K.
,
Zhang
,
S.
, et al
,
2023
, “
Max: A Wheeled-Legged Quadruped Robot for Multimodal Agile Locomotion
,”
IEEE Trans. Autom. Sci. Eng.
, pp.
1
21
.
18.
Héder
,
M.
,
2017
, “
From NASA to EU: The Evolution of the TRL Scale in Public Sector Innovation
,”
Innov. J.
,
22
(
2
), pp.
1
23
. https://eprints.sztaki.hu/id/eprint/9204
20.
Herbert
,
S. D.
,
Drenner
,
A.
, and
Papanikolopoulos
,
N.
,
2008
, “
Loper: A Quadruped-Hybrid Stair Climbing Robot
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
799
804
.
21.
Quaglia
,
G.
,
Oderio
,
R.
,
Bruzzone
,
L.
, and
Razzoli
,
R.
,
2013
, “
A Modular Approach for a Family of Ground Mobile Robots
,”
Int. J. Adv. Robot. Syst.
,
10
(
7
), p.
296
.
22.
Ottaviano
,
E.
,
Rea
,
P.
, and
Castelli
,
G.
,
2014
, “
THROO: A Tracked Hybrid Rover to Overpass Obstacles
,”
Adv. Robot.
,
28
(
10
), pp.
683
694
.
23.
Liu
,
P.
,
Wang
,
J.
,
Wang
,
X.
, and
Zhao
,
P.
,
2018
, “
Optimal Design of a Stair-Climbing Mobile Robot With Flip Mechanism
,”
Adv. Robot.
,
32
(
6
), pp.
325
336
.
24.
Bruzzone
,
L.
,
Nodehi
,
S. E.
,
De Domenico
,
D.
, and
Fanghella
,
P.
,
2024
, “
WheTLHLoc: Small-Scale Hybrid Locomotion Robot With Stair Climbing Capability
,”
ASME J. Mech. Rob.
,
16
(
2
), p. 021007.
25.
Alamdari
,
A.
, and
Krovi
,
V. N.
,
2016
, “
Design of Articulated leg-Wheel Subsystem by Kinetostatic Optimization
,”
Mech. Mach. Theory
,
100
, pp.
222
234
.
26.
Chen
,
S. C.
,
Huang
,
K. J.
,
Chen
,
W. H.
,
Shen
,
S. Y.
,
Li
,
C. H.
, and
Lin
,
P. C.
,
2014
, “
Quattroped: A Leg-Wheel Transformable Robot
,”
IEEE/ASME Trans. Mechatron.
,
19
(
2
), pp.
730
742
.
27.
Chen
,
W. H.
,
Lin
,
H. S.
,
Lin
,
Y. M.
, and
Lin
,
P. C.
,
2017
, “
TurboQuad: A Novel Leg-Wheel Transformable Robot With Smooth and Fast Behavioral Transitions
,”
IEEE Trans. Robot.
,
33
(
5
), pp.
1025
1040
.
28.
Zheng
,
C.
, and
Lee
,
K.
,
2019
, “
WheeLeR: Wheel-Leg Reconfigurable Mechanism With Passive Gears for Mobile Robot Applications
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
Montreal, QC, Canada
,
May 20–24
, pp.
9292
9298
.
29.
Mertyüz
,
İ.
,
Tanyıldızı
,
A. K.
,
Taşar
,
B.
,
Tatar
,
A. B.
, and
Yakut
,
O.
,
2020
, “
FUHAR: A Transformable Wheel-Legged Hybrid Mobile Robot
,”
Robot. Auton. Syst.
,
133
, p.
103627
.
30.
Shi
,
Y.
,
Zhang
,
M.
,
Li
,
M.
, and
Zhang
,
X.
,
2023
, “
Design and Analysis of a Wheel−Leg Hybrid Robot With Passive Transformable Wheels
,”
Symmetry (Basel)
,
15
(
4
).
31.
Sun
,
T.
,
Xiang
,
X.
,
Su
,
W.
,
Wu
,
H.
, and
Song
,
Y.
,
2017
, “
A Transformable Wheel-Legged Mobile Robot: Design, Analysis and Experiment
,”
Robot. Auton. Syst.
,
98
, pp.
30
41
.
32.
Allen
,
T. J.
,
Quinn
,
R. D.
,
Bachmann
,
R. J.
, and
Ritzmann
,
R. E.
,
2003
, “
Abstracted Biological Principles Applied With Reduced Actuation Improve Mobility of Legged Vehicles
,”
IEEE International Conference on Intelligent Robots and Systems
,
(IROS 2003) (Cat. No.03CH37453), Las Vegas, NV
,
Oct. 27–31
, vol.
2
, pp.
1370
1375
.
33.
Schroer
,
R. T.
,
Boggess
,
M. J.
,
Bachman
,
R. J.
,
Quinn
,
R. D.
, and
Ritzmann
,
R. E.
,
2004
, “
Comparing Cockroach and Whegs Robot Body Motions
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
New Orleans, LA
,
Apr. 26–May 1
, Vol.
4
, pp.
3288
3293
.
34.
Lewinger
,
W. A.
,
Harley
,
C. M.
,
Ritzmann
,
R. E.
,
Branicky
,
M. S.
, and
Quinn
,
R. D.
,
2005
, “
Insect-Like Antennal Sensing for Climbing and Tunneling Behavior in a Biologically-Inspired Mobile Robot
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22l
, pp.
4176
4181
.
35.
Daltorio
,
K. A.
,
Wei
,
T. E.
,
Gorb
,
S. N.
,
Ritzmann
,
R. E.
, and
Quinn
,
R. D.
,
2007
, “
Passive Foot Design and Contact Area Analysis for Climbing Mini-WhegsTM
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
Rome, Italy
,
Apr. 10–14
, pp.
1274
1279
.
36.
Quinn
,
R. D.
,
Offi
,
J. T.
,
Kingsley
,
D. A.
, and
Ritzmann
,
R. E.
,
2002
, “
Improved Mobility Through Abstracted Biological Principles
,”
IEEE International Conference on Intelligent Robots and Systems
,
Lausanne, Switzerland
,
Sept. 30–Oct. 4
, vol.
3
, pp.
2652
2657
.
37.
Saranli
,
U.
,
Buehler
,
M.
, and
Koditschek
,
D. E.
,
2001
, “
RHex: A Simple and Highly Mobile Hexapod Robot
,”
Int. J. Robot. Res.
,
20
(
7
), pp.
616
631
.
38.
Nechev
,
V. K.
,
2021
, “Speedy Whegs: Steering and Stability Analysis of High-Speed, Compliant, Wheel-Leg Robots,” Doctoral dissertation,
Case Western Reserve University School of Graduate Studie
,
Cleveland, OH
.
39.
Morrey
,
J. M.
,
Lambrecht
,
B.
,
Horchler
,
A. D.
,
Ritzmann
,
R. E.
, and
Quinn
,
R. D.
,
2003
, “
Highly Mobile and Robust Small Quadruped Robots
,”
IEEE International Conference on Intelligent Robots and Systems
,
Las Vegas, NV
,
Oct. 27–31
, vol.
1
, pp.
82
87
.
40.
Breckwoldt
,
W. A.
,
Daltorio
,
K. A.
,
Heepe
,
L.
,
Horchler
,
A. D.
,
Gorb
,
S. N.
, and
Quinn
,
R. D.
,
2015
, “
Walking Inverted on Ceilings With Wheel-Legs and Micro-Structured Adhesives
,”
IEEE International Conference on Intelligent Robots and Systems
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
3308
3313
.
41.
Daltorio
,
K. A.
,
Wei
,
T. E.
,
Horchler
,
A. D.
,
Southard
,
L.
,
Wile
,
G. D.
,
Quinn
,
R. D.
,
Gorb
,
S. N.
, et al
,
2009
, “
Mini-WhegsTM Climbs Steep Surfaces Using Insect-Inspired Attachment Mechanisms
,”
Int. J. Robot. Res.
,
28
(
2
), pp.
285
302
.
42.
Murphy
,
M. P.
,
Tso
,
W.
,
Tanzini
,
M.
, and
Sitti
,
M.
,
2006
, “
Waalbot: An Agile Small-Scale Wall Climbing Robot Utilizing Pressure Sensitive Adhesives
,”
IEEE International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9–15
, pp.
3411
3416
.
43.
Breckwoldt
,
W. A.
,
2018
, “
The Simulation and Testing of Fast Locomotion with Wheel-Legs
,” MS Thesis,
Case Western Reserve University
,
Cleveland, OH
.
44.
Lee
,
J.
,
2013
, “Hierarchical Controller for Highly Dynamic Locomotion Utilizing Pattern Modulation and Impedance Control: Implementation on the MIT Cheetah Robot,” MS Thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
. http://hdl.handle.net/1721.1/85490
45.
Fremerey
,
M.
,
Köhring
,
S.
,
Nassar
,
O.
,
Schöne
,
M.
,
Weinmeister
,
K.
,
Becker
,
F.
,
Dordević
,
G. S.
, et al
,
2014
, “
A Phase-Shifting Double-Wheg-Module for Realization of Wheg-Driven Robots
,”
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
,
Milan, Italy
,
July 30–Aug. 1
, pp.
97
107
.
46.
Yamamoto
,
K.
, and
Aoki
,
T.
,
2020
, “
Development of Novel Mobile Robot With Semicircular Wheels
,”
ROBOMECH J.
,
7
(
1
).
47.
Krishniah
,
K.
and
Shahabudeen
,
P.
,
2012
,
Applied Design of Experiments and Taguchi Methods
,
PHI Learning Pvt. Ltd.
,
New Delhi
.
48.
Endo
,
G.
, and
Hirose
,
S.
,
2011
, “
Study on Roller-Walker—Energy Efficiency of Roller-Walk
,”
Proceedings—IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
5050
5055
.
You do not currently have access to this content.