Abstract

Cooperative robot systems are an essential candidate for object transportation solutions. They offer cost-efficient and flexible operation for various types of robotic tasks. The benefits of cooperative robot systems have triggered the improvement of the object transportation field. In this study, a new way of transporting objects by cooperative robots is presented. The proposed method is performed by the pushing action of the magnetic forces of the robots. The permanent magnets mounted on the mobile robots and the cart create this repelling force. The rectangular object carrier cart equipped with passive caster wheels can be manipulated on flat terrains easily and be assigned to carry different shapes of objects. Using a carrier cart has the advantage of eliminating the vertical loads on the robots. Controlling a non-contact pushing method offers a low computational burden since simple velocity and position updates are adequate for operation management. Compared with the other methods of object transportation systems, the non-contact pushing method provides a faster operation with less sensitivity to control errors. Both simulations and real-world experiments are conducted and the performances are given comparatively with a generalized frictional contact object-pushing method. The results show that the proposed method provides 10.48% faster and 20.03% more accurate object transportation compared to the frictional contact method. It is envisioned that the presented method can be a promising candidate for object transportation tasks in the industry.

References

1.
Couceiro
,
M. S.
,
Portugal
,
D.
,
Ferreira
,
J. F.
, and
Rocha
,
R. P.
,
2019
, “
SEMFIRE: Towards a New Generation of Forestry Maintenance Multi-robot Systems
,”
IEEE/SICE International Symposium on System Integration (SII)
,
Paris, France
,
Jan. 14–16
, pp.
270
276
.
2.
Edlerman
,
E.
, and
Linker
,
R.
,
2019
, “
Autonomous Multi-robot System for Use in Vineyards and Orchards
,”
27th Mediterranean Conference on Control and Automation (MED)
,
Akko, Israel
,
July 1–4
, pp.
274
279
.
3.
Moser
,
J.
,
Hoffman
,
J.
,
Hildebrand
,
R.
, and
Komendera
,
E.
,
2022
, “
An Autonomous Task Assignment Paradigm for Autonomous Robotic In-Space Assembly
,”
Front. Robot. AI
,
9
(
1
), p.
709905
.
4.
Wan
,
W.
,
Shi
,
B.
,
Wang
,
Z.
, and
Fukui
,
R.
,
2020
, “
Multirobot Object Transport Via Robust Caging
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
,
50
(
1
), pp.
270
280
.
5.
Moorthy
,
S.
, and
Joo
,
Y. H.
,
2022
, “
Formation Control and Tracking of Mobile Robots Using Distributed Estimators and a Biologically Inspired Approach
,”
J. Electr. Eng. Technol.
,
18
(
3
), pp.
2231
2244
.
6.
Miao
,
Z.
,
Liu
,
Y. H.
,
Wang
,
Y.
,
Yi
,
G.
, and
Fierro
,
R.
,
2018
, “
Distributed Estimation and Control for Leader-Following Formations of Nonholonomic Mobile Robots
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
4
), pp.
1946
1954
.
7.
Inglett
,
J. E.
, and
Rodriguez-Seda
,
E. J.
,
2017
, “
Object Transportation by Cooperative Robots
,”
SoutheastCon 2017
,
Concord, NC
,
Mar. 29–Apr. 2
.
8.
Freda
,
L.
,
Gianni
,
M.
,
Pirri
,
F.
,
Gawel
,
A.
,
Dube
,
R.
,
Siegwart
,
R.
, and
Cadena
,
C.
,
2019
, “
3D Multi-robot Patrolling With a Two-Level Coordination Strategy
,”
Auton. Rob.
,
43
(
7
), pp.
1747
1779
.
9.
Farivarnejad
,
H.
,
Lafmejani
,
A. S.
, and
Berman
,
S.
,
2021
, “
Fully Decentralized Controller for Multi-robot Collective Transport in Space Applications
,”
IEEE Aerospace Conference (50100)
,
Big Sky, MT
,
Mar. 6–13
, pp.
1
9
.
10.
Recker
,
T.
,
Heinrich
,
M.
, and
Raatz
,
A.
,
2021
, “
A Comparison of Different Approaches for Formation Control of Nonholonomic Mobile Robots Regarding Object Transport
,”
Proc. CIRP
,
96
(
1
), pp.
248
253
.
11.
Fan
,
C.
,
Zeng
,
F.
,
Shirafuji
,
S.
, and
Ota
,
J.
,
2023
, “
Development of a Three-Mobile-Robot System for Cooperative Transportation
,”
ASME J. Mech. Rob.
,
16
(
2
), p.
021008
.
12.
Jung
,
H. S.
,
Kim
,
J. Y.
,
Yang
,
S. Y.
,
Kim
,
K.
,
Park
,
J. H.
,
Gong
,
Y. J.
,
Moon
,
S. J.
, and
Choi
,
H. R.
,
2023
, “
Shape-Adaptive Electrostatic Soft Gripper With Transform Mechanism for Multifunctional Grips
,”
ASME J. Mech. Rob.
,
15
(
5
), p.
051015
.
13.
Lin
,
Y.
,
Wang
,
T.
,
Spyrakos-Papastavridis
,
E.
,
Fu
,
Z.
,
Xu
,
S.
, and
Dai
,
J. S.
,
2023
, “
Minimum Friction Coefficient-Based Precision Manipulation Workspace Analysis of the Three-Fingered Metamorphic Hand
,”
ASME J. Mech. Rob.
,
15
(
5
), p.
051018
.
14.
Pereira
,
G.
,
Kumar
,
R.
, and
Campos
,
M.
,
2004
, “
Decentralized Algorithms for Multirobot Manipulation Via Caging
,”
Int. J. Rob. Res.
,
23
(
7
), pp.
783
795
.
15.
Farivarnejad
,
H.
, and
Berman
,
S.
,
2018
, “
Stability and Convergence Analysis of a Decentralized Proportional-Integral Control Strategy for Collective Transport
,”
Annual American Control Conference (ACC)
,
Milwaukee, WI
,
June 27–29
, pp.
2794
2801
.
16.
Esposito
,
J. M.
,
2010
, “
Decentralized Cooperative Manipulation With a Swarm of Mobile Robots: The Approach Problem
,”
Proceedings of the 2010 American Control Conference
,
Baltimore, MD
,
June 30–July 2
, pp.
4762
4767
.
17.
Donald
,
B. R.
,
Jennings
,
J.
, and
Rus
,
D.
,
1999
, “
Information Invariants for Distributed Manipulation
,”
Int. J. Rob. Res.
,
16
(
5
), pp.
673
702
.
18.
Yang
,
X.
,
Watanabe
,
K.
,
Izumi
,
K.
, and
Kiguchi
,
K.
,
2004
, “
A Decentralized Control System for Cooperative Transportation by Multiple Non-Holonomic Mobile Robots
,”
Int. J. Control
,
77
(
10
), pp.
949
963
.
19.
Ebel
,
H.
, and
Eberhard
,
P.
,
2021
, “
Non-Prehensile Cooperative Object Transportation With Omnidirectional Mobile Robots: Organization, Control, Simulation, and Experimentation
,”
International Symposium on Multi-Robot and Multi-agent Systems (MRS)
,
Cambridge, UK
,
Nov. 4–5
, pp.
1
10
.
20.
Eoh
,
G.
, and
Park
,
T.-H.
,
2021
, “
Cooperative Object Transportation Using Curriculum-Based Deep Reinforcement Learning
,”
Sensors
,
21
(
14
), p.
4780
.
21.
Tuci
,
E.
,
Alkilabi
,
M. H. M.
, and
Akanyeti
,
O.
,
2018
, “
Cooperative Object Transport in Multi-robot Systems: A Review of the State-of-the-Art
,”
Front. Rob. AI
,
5
(
1
), p.
59
.
22.
Consolini
,
L.
,
Morbidi
,
F.
,
Prattichizzo
,
D.
, and
Tosques
,
M.
,
2008
, “
Leader–Follower Formation Control of Nonholonomic Mobile Robots With Input Constraints
,”
Automatica
,
44
(
5
), pp.
1343
1349
.
23.
Xiao
,
H.
,
Li
,
Z.
, and
Philip Chen
,
C. L.
,
2016
, “
Formation Control of Leader–Follower Mobile Robots' Systems Using Model Predictive Control Based on Neural-Dynamic Optimization
,”
IEEE Trans. Ind. Electron.
,
63
(
9
), pp.
5752
5762
.
24.
Das
,
A. K.
,
Fierro
,
R.
,
Kumar
,
V.
,
Ostrowski
,
J. P.
,
Spletzer
,
J.
, and
Taylor
,
C. J.
,
2002
, “
A Vision-Based Formation Control Framework
,”
IEEE Trans. Rob. Autom.
,
18
(
5
), pp.
813
825
.
25.
Jo
,
S. M.
, and
Yoon
,
H.
,
2024
, “
Energy-Efficient Tristable Soft Gripper Using Shape Memory Alloy Wires for Gripping Convex and Concave Objects
,”
ASME J. Mech. Rob.
,
16
(
2
), p.
022013
.
26.
Wang
,
R.
,
Huang
,
H.
, and
Li
,
X.
,
2023
, “
Self-Adaptive Grasping Analysis of a Simulated “Soft” Mechanical Grasper Capable of Self-Locking
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
061006
.
27.
Chowdhury
,
A. B.
,
Li
,
J.
, and
Cappelleri
,
D. J.
,
2023
, “
Neural Network-Based Pose Estimation Approaches for Mobile Manipulation
,”
ASME J. Mech. Rob.
,
15
(
1
), p.
011009
.
28.
Thakar
,
S.
,
Srinivasan
,
S.
,
Al-Hussaini
,
S.
,
Bhatt
,
P. M.
,
Rajendran
,
P.
,
Jung Yoon
,
Y.
,
Dhanaraj
,
N.
, et al
,
2023
, “
A Survey of Wheeled Mobile Manipulation: A Decision-Making Perspective
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
020801
.
29.
Woodruff
,
J. Z.
, and
Lynch
,
K. M.
,
2017
, “
Planning and Control for Dynamic, Nonprehensile, and Hybrid Manipulation Tasks
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
4066
4073
.
30.
Meriçli
,
T.
,
Veloso
,
M.
, and
Akın
,
H. L.
,
2015
, “
Push-Manipulation of Complex Passive Mobile Objects Using Experimentally Acquired Motion Models
,”
Auton. Rob.
,
38
(
3
), pp.
317
329
.
31.
Krivic
,
S.
, and
Piater
,
J.
,
2019
, “
Pushing Corridors for Delivering Unknown Objects With a Mobile Robot
,”
Auton. Rob.
,
43
(
6
), pp.
1435
1452
.
32.
Stüber
,
J.
,
Zito
,
C.
, and
Stolkin
,
R.
,
2020
, “
Let’s Push Things Forward: A Survey on Robot Pushing
,”
Front. Robot. AI
,
7
(
1
), p.
8
.
33.
Venkatesan
,
V.
,
Seymour
,
J.
, and
Cappelleri
,
D. J.
,
2018
, “
Micro-Assembly Sequence and Path Planning Using Subassemblies
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061015
.
34.
Rigo
,
A.
,
Chen
,
Y.
,
Gupta
,
S. K.
, and
Nguyen
,
Q.
,
2023
, “
Contact Optimization for Non-Prehensile Loco-Manipulation Via Hierarchical Model Predictive Control
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
London, UK
,
May 29–June 2
, pp.
9945
9951
.
35.
Yan
,
B.
,
Shi
,
P.
, and
Lim
,
C. C.
,
2022
, “
Robust Formation Control for Nonlinear Heterogeneous Multiagent Systems Based on Adaptive Event-Triggered Strategy
,”
IEEE Trans. Autom. Sci. Eng.
,
19
(
4
), pp.
2788
2800
.
36.
Wang
,
B.
,
Wang
,
J.
,
Zhang
,
B.
,
Chen
,
W.
, and
Zhang
,
Z.
,
2018
, “
Leader–Follower Consensus of Multivehicle Wirelessly Networked Uncertain Systems Subject to Nonlinear Dynamics and Actuator Fault
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
2
), pp.
492
505
.
37.
Lashkari
,
N.
,
Biglarbegian
,
M.
, and
Yang
,
S. X.
,
2020
, “
Development of a Novel Robust Control Method for Formation of Heterogeneous Multiple Mobile Robots With Autonomous Docking Capability
,”
IEEE Trans. Autom. Sci. Eng.
,
17
(
4
), pp.
1759
1776
.
38.
Elkaim
,
G. H.
, and
Kelbley
,
R. J.
,
2006
, “
A Lightweight Formation Control Methodology for a Swarm of Non-Holonomic Vehicles
,”
IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 4–11
, pp.
1
8
.
39.
Gallardo
,
N.
,
Pai
,
K.
,
Erol
,
B. A.
,
Benavidez
,
P.
, and
Jamshidi
,
M.
,
2016
, “
Formation Control Implementation Using Kobuki Turtlebots and Parrot Bebop Drone
,”
World Automation Congress (WAC)
,
Rio Grande, PR
,
July 31–Aug. 4
, pp.
1
6
.
40.
Besseghieur
,
K. L.
,
Trebinski
,
R.
,
Kaczmarek
,
W.
, and
Panasiuk
,
J.
,
2019
, “
Leader-Follower Formation Control for a Group of ROS-Enabled Mobile Robots
,”
6th International Conference on Control, Decision and Information Technologies (CoDIT)
,
Paris, France
,
Apr. 23–26
, pp.
1556
1561
.
41.
Liu
,
Y.
,
Gao
,
J.
,
Liu
,
C.
,
Zhao
,
F.
, and
Zhao
,
J.
,
2018
, “
Reconfigurable Formation Control of Multi-agents Using Virtual Linkage Approach
,”
Appl. Sci.
,
8
(
7
), p.
1109
.
42.
Ebel
,
H.
, and
Eberhard
,
P.
,
2021
, “
A Comparative Look at Two Formation Control Approaches Based on Optimization and Algebraic Graph Theory
,”
Rob. Auton. Syst.
,
136
(
1
), p.
103686
.
43.
Şenbaşlar
,
B.
,
Hönig
,
W.
, and
Ayanlan
,
N.
,
2023
, “
RLSS: Real-Time, Decentralized, Cooperative, Networkless Multi-robot Trajectory Planning Using Linear Spatial Separations
,”
Auton. Rob.
,
47
(
7
), pp.
921
946
.
44.
Gao
,
K.
,
Xin
,
J.
,
Cheng
,
H.
,
Liu
,
D.
, and
Li
,
J.
,
2018
, “
Multi-mobile Robot Autonomous Navigation System for Intelligent Logistics
,”
Chinese Automation Congress (CAC)
,
Xi’an, China
,
Nov. 30–Dec. 2
, pp.
2603
2609
.
45.
Farivarnejad
,
H.
,
Wilson
,
S.
,
Berman
,
S.
,
2016
, “
Decentralized Sliding Mode Control for Autonomous Collective Transport by Multi-robot Systems
,”
IEEE 55th Conference on Decision and Control (CDC)
, pp.
1826
1833
.
46.
Khalil
,
H. K.
,
1996
,
Nonlinear Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
47.
Hyland
,
S. M.
,
Xiao
,
J.
, and
Onal
,
C. D.
,
2023
, “
Predicting Center of Mass by Iterative Pushing for Object Transportation and Manipulation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Detroit, MI
,
Oct. 1–5
, pp.
1615
1620
.
48.
Gao
,
Z.
,
Elibol
,
A.
, and
Chong
,
N. Y.
,
2023
, “
Estimating the Center of Mass of an Object With Non-Uniform Density Via High-Speed Pushing
,”
IEEE 19th International Conference on Automation Science and Engineering (CASE)
,
Auckland, New Zealand
,
Aug. 26–30
, pp.
1
8
.
49.
Dokuyucu
,
, and
Gürsel Özmen
,
N.
,
2023
, “
A Non-Contact Object Delivery System Using Leader-Follower Formation Control for Multi-robots
,”
J. Appl. Methods Electron. Comput.
,
11
(
3
), pp.
134
144
.
You do not currently have access to this content.