Graphical Abstract Figure

Analysis of the over-tensioning process of creased unit in the inclined mode (W = 40 mm): (a) principal strain for the final state, (b) residual height for the final state (mm), (c) CD characteristic line shape, and (d) AB characteristic line shape

Graphical Abstract Figure

Analysis of the over-tensioning process of creased unit in the inclined mode (W = 40 mm): (a) principal strain for the final state, (b) residual height for the final state (mm), (c) CD characteristic line shape, and (d) AB characteristic line shape

Close modal

Abstract

Compared to ideal purely rotational creases, the introduction of rotational stiffness in the creases of origami/kirigami units inevitably alters the shape transformation process due to the interaction between the creases and the panels. The unfolding process of creased units with crease rotational stiffness involves two stages: the flattening process and the over-tensioning process. This paper focuses on the impact of crease rotational stiffness on the uniform stretching process of creased units of different modes and sizes. During the flattening process, the strain energy distribution for creased units in straight and inclined modes is analyzed, revealing the influence of geometric parameters through the use of a scale parameter, which can provide references for the design of creased units. In the over-tensioning process, the suppression effect of low over-tension strain levels on out-of-plane residual deformation in the flattened state of the creased units is systematically explained, with a significant influence from panel width. Additionally, it is discovered and explained that over-tension strain can lead to the overall rotation of certain areas in inclined creased units. Although this paper starts with a simple creased unit and overlooks the interactions between panels, the coupling deformation behavior between the crease and the panels during the tensioning process can still provide valuable insights for the deformation analysis of more intricate origami/kirigami structures.

Reference

1.
Meloni
,
M.
,
Cai
,
J.
,
Zhang
,
Q.
,
Lee
,
D.
,
Li
,
M.
,
Ma
,
R.
,
Parashkevov
,
T. E.
, and
Feng
,
J.
,
2021
, “
Engineering Origami: A Comprehensive Review of Recent Applications, Design Methods, and Tools
,”
Adv. Sci.
,
8
(
13
), p.
2000636
.
2.
Zhang
,
Q.
,
Pan
,
N.
,
Liu
,
S.
,
Feng
,
J.
, and
Cai
,
J.
,
2024
, “
Self-Locking Kirigami Surfaces via Controlled Stretching
,”
Commun. Eng.
,
3
(
1
), p.
26
.
3.
Dang
,
X.
, and
Paulino G
,
H.
,
2024
, “
Axisymmetric Blockfold Origami: A Non-Flat-Foldable Miura Variant With Self-Locking Mechanisms and Enhanced Stiffness
,”
Proc. R. Soc. A
,
480
(
2288
), p.
20230956
.
4.
Dudte
,
L. H.
,
Vouga
,
E.
,
Tachi
,
T.
, and
Mahadevan
,
L.
,
2016
, “
Programming Curvature Using Origami Tessellations
,”
Nat. Mater.
,
15
(
5
), pp.
583
588
.
5.
Zhang
,
Q.
,
Qiu
,
H.
,
Lin
,
Q.
,
Feng
,
J.
, and
Cai
,
J.
,
2024
, “
Uniform Stretching Behavior of Single Crease Origami Arrays
,”
Int. J. Solids Struct.
,
302
(
1
), p.
112993
.
6.
Zhang
,
Q.
,
Meloni
,
M.
,
Feng
,
J.
, and
Cai
,
J.
,
2024
, “
Partial Stretch Behavior Analysis of Single Crease Origami Unit
,”
Extreme Mech. Lett.
,
70
(
1
), p.
102184
.
7.
Zhai
,
Z.
,
Wu
,
L.
, and
Jiang
,
H.
,
2021
, “
Mechanical Metamaterials Based on Origami and Kirigami
,”
Appl. Phys. Rev.
,
8
(
4
), p.
041319
.
8.
Cai
,
J.
,
Ren
,
Z.
,
Ding
,
Y.
,
Deng
,
X.
,
Xu
,
Y.
, and
Feng
,
J.
,
2017
, “
Deployment Simulation of Foldable Origami Membrane Structures
,”
Aerosp. Sci. Technol.
,
67
(
1
), pp.
343
353
.
9.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
9
), pp.
3276
3281
.
10.
Meloni
,
M.
,
Ballegaard
,
E.
,
Zhang
,
Q.
,
Zhang
,
J.
,
Ma
,
R.
, and
Cai
,
J.
,
2023
, “
Shape and Motion Inverse Design of an Origami-Based Deployable Structure for Architectural Applications
,”
J. Struct. Eng.
,
149
(
12
), p.
04023174
.
11.
Liu
,
K.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2021
, “
Bio-Inspired Origami Metamaterials With Metastable Phases Through Mechanical Phase Transitions
,”
ASME J. Appl. Mech.
,
88
(
9
), p.
091002
.
12.
Ma
,
J.
,
Zang
,
S.
,
Feng
,
H.
,
Chen
,
Y.
, and
You
,
Z.
,
2021
, “
Theoretical Characterization of a Non-Rigid-Foldable Square-Twist Origami for Property Programmability
,”
Int. J. Mech. Sci.
,
189
(
1
), p.
105981
.
13.
Grey
,
S. W.
,
Scarpa
,
F.
, and
Schenk
,
M.
,
2020
, “
Mechanics of Paper-Folded Origami: A Cautionary Tale
,”
Mech. Res. Commun.
,
107
(
1
), p.
103540
.
14.
Xia
,
Z. M.
,
Wang
,
C. G.
, and
Tan
,
H. F.
,
2020
, “
Quasi-Static Unfolding Mechanics of a Creased Membrane Based on a Finite Deformation Crease–Beam Model
,”
Int. J. Solids Struct.
,
207
(
1
), pp.
104
112
.
15.
Feng
,
Y.
,
Wang
,
M.
, and
Qiu
,
X.
,
2022
, “
A Simplified Mechanical Model of the Crease in the Flexible Origami Structures
,”
Int. J. Solids Struct.
,
241
(
1
), p.
111530
.
16.
Liu
,
S
,
Feng
,
J
, and
Cai
,
J
,
2025
, “
A Configuration Design Method for Kirigami-Inspired Miura Thick Panel Origami with Single Degree of Freedom
,”
Eng. Struct.
,
325
(
1
), p.
119464
.
17.
Wang
,
L.
,
Song
,
W.
,
Zhang
,
Y.
,
Qu
,
M.
,
Zhao
,
Z.
,
Chen
,
M.
,
Yang
,
Y.
, and
Chen H
,
F. A. N. G. D.
,
2020
, “
Active Reconfigurable Tristable Square-Twist Origami
,”
Adv. Funct. Mater.
,
30
(
13
), p.
1909087
.
18.
Aksoy
,
B.
, and
Shea
,
H.
,
2022
, “
Multistable Shape Programming of Variable-Stiffness Electromagnetic Devices
,”
Sci. Adv.
,
8
(
21
), p.
eabk0543
.
19.
Pan
,
Y.
,
Yang
,
Z.
,
Li
,
C.
,
Hassan
,
S. U.
, and
Shum
,
H. C.
,
2022
, “
Plant-Inspired TransfOrigami Microfluidics
,”
Sci. Adv.
,
8
(
18
), p.
eabo1719
.
20.
Liu
,
K.
,
Zhang
,
Y.
,
Cao
,
H.
,
Liu
,
H.
,
Geng
,
Y.
,
Yuan
,
W.
,
Zhou
,
J.
, et al
,
2020
, “
Programmable Reversible Shape Transformation of Hydrogels Based on Transient Structural Anisotropy
,”
Adv. Mater.
,
32
(
28
), p.
2001693
.
21.
Van Manen
,
T.
,
Janbaz
,
S.
,
Ganjian
,
M.
, and
Zadpoor
,
A. A.
,
2020
, “
Kirigami-Enabled Self-Folding Origami
,”
Mater. Today
,
32
(
1
), pp.
59
67
.
22.
Tahouni
,
Y.
,
Cheng
,
T.
,
Wood
,
D.
,
Sachse
,
R.
,
Thierer
,
R.
,
Bischoff
,
M.
, and
Menges
,
A.
,
2020
, “
Self-Shaping Curved Folding: A 4D-Printing Method for Fabrication of Self-Folding Curved Crease Structures
,”
Proceedings of the ACM Symposium on Computational Fabrication (SCF 2020)
,
Virtual Event
,
Nov. 5–6
,
p. 11
.
23.
Rafsanjani
,
A.
, and
Bertoldi
,
K.
,
2017
, “
Buckling-Induced Kirigami
,”
Phys. Rev. Lett.
,
118
(
8
), p.
084301
.
24.
Rafsanjani
,
A.
,
Zhang
,
Y.
,
Liu
,
B.
,
Rubinstein S
,
M.
, and
Bertoldi
,
K.
,
2018
, “
Kirigami Skins Make a Simple Soft Actuator Crawl
,”
Sci. Robot.
,
3
(
15
), p.
eaar7555
.
25.
Mintchev
,
S.
,
Shintake
,
J.
, and
Floreano
,
D.
,
2018
, “
Bioinspired Dual-Stiffness Origami
,”
Sci. Robot.
,
3
(
20
), p.
eaau0275
.
26.
Cai
,
J.
,
Zhou
,
Y.
,
Feng
,
J.
, and
Xu
,
Y.
,
2017
, “
A Bistable Rolling Joint for Multistable Structures
,”
Mech. Res. Commun.
,
79
(
1
), pp.
1
6
.
27.
Faber
,
J. A.
,
Arrieta
,
A. F.
, and
Studart
,
A. R.
,
2018
, “
Bioinspired Spring Origami
,”
Science
,
359
(
6382
), pp.
1386
1391
.
28.
Delimont
,
I. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011009
.
29.
Delimont
,
I. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
A Family of Dual-Segment Compliant Joints Suitable for use as Surrogate Folds
,”
ASME J. Mech. Des.
,
137
(
9
), p.
092302
.
30.
Dharmadasa
,
B. Y.
,
Mallikarachchi
,
H. M. Y. C.
, and
Jiménez
,
F. L.
,
2018
, “
Characterizing the Mechanics of Fold-Lines in Thin Kapton Membranes
,”
Proceedings of the 2018 AIAA Spacecraft Structures Conference
,
Kissimmee, FL
,
Jan. 8–12
,
p. 0450
.
31.
Satou
,
Y
, and
Furuya
,
H
,
2018
, “
Effects of Elasto-Plastic Behavior of Crease on Deployed Shape of Space Membrane
,”
Proceedings of the 2018 AIAA Spacecraft Structures Conference
,
Kissimmee, FL
,
Jan. 8–12
,
p. 0449
.
32.
Xia
,
Z. M.
,
Wang
,
C. G.
, and
Tan
,
H. F.
,
2018
, “
Elastoplastic Folding Behavior of Membrane Ribbon Based on Plane Strain Beam Theory
,”
Int. J. Solids Struct.
,
143
(
1
), pp.
167
174
.
33.
Dharmadasa B
,
Y.
,
Mccallum
,
M. W.
,
Mierunalan
,
S.
,
Dassanayake
,
S. P.
,
Mallikarachchi
,
C. H.
, and
López Jiménez
,
F.
,
2020
, “
Formation of Plastic Creases in Thin Polyimide Films
,”
ASME J. Appl. Mech.
,
87
(
5
), p.
051009
.
34.
Jules
,
T.
,
Lechenault
,
F.
, and
Adda-Bedia
,
M.
,
2020
, “
Plasticity and Aging of Folded Elastic Sheets
,”
Phys. Rev. E
,
102
(
3
), p.
033005
.
35.
Zhang
,
Q.
,
Li
,
Y.
,
Kueh A
,
B. H.
,
Qian
,
Z.
, and
Cai
,
J.
,
2022
, “
Folding Responses of Origami-Inspired Structures Connected by Groove Compliant Joints
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031010
.
36.
Sargent
,
B.
,
Brown
,
N.
,
Jensen
,
B. D.
,
Magleby
,
S. P.
,
Pitt
,
W. G.
, and
Howell
,
L. L.
,
2019
, “
Heat Set Creases in Polyethylene Terephthalate (PET) Sheets to Enable Origami-Based Applications
,”
Smart Mater. Struct.
,
28
(
11
), p.
115047
.
37.
Lechenault
,
F.
,
Thiria
,
B.
, and
Adda-Bedia
,
M.
,
2014
, “
Mechanical Response of a Creased Sheet
,”
Phys. Rev. Lett.
,
112
(
24
), p.
244301
.
38.
Jules
,
T.
,
Lechenault
,
F.
, and
Adda-Bedia
,
M.
,
2019
, “
Local Mechanical Description of an Elastic Fold
,”
Soft Matter
,
15
(
7
), pp.
1619
1626
.
You do not currently have access to this content.