Abstract

This article presents a comprehensive performance analysis of the step-climbing and passive rolling modes of a hexagon rolling mechanism with single-degree-of-freedom, based on its structural characteristics and the constraints of centroid stability. First, a step-climbing model, incorporating motion parameters and support distance parameters, is established by leveraging the symmetrical posture movement characteristics of the hexagon rolling mechanism. Building on this foundation, the impact of each parameter on the mechanism's step-climbing ability is thoroughly analyzed, and the maximum height achievable during step climbing is also examined. Subsequently, the existence and sufficient conditions for the hexagon rolling mechanism to achieve passive rolling are analyzed using the centroid fluctuation curve and its slope curves. The analysis results indicate that, due to its unique coupling structure design, the hexagon rolling mechanism possesses a passive rolling capability that is not available in conventional planar linkage mechanisms. Finally, the correctness of the theoretical model is validated through both simulation and prototype experiments.

References

1.
Zhu
,
Y. H.
,
Wang
,
X. L.
,
Fan
,
J. Z.
,
Iqbal
,
S.
,
Bie
,
D. Y.
, and
Zhao
,
J.
,
2014
, “
Analysis and Implementation of Multiple Bionic Motion Patterns for Caterpillar Robot Driven by Sinusoidal Oscillator
,”
Adv. Mech. Eng.
,
6
, p.
259463
.
2.
Zhao
,
J.
,
Cui
,
X. D.
,
Zhu
,
Y. H.
, and
Tang
,
S. F.
,
2011
, “
A New Self-Reconfigurable Modular Robotic System Ubot: Multi-Mode Locomotion and Self-Reconfiguration
,”
Proceedings of the 2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
1020
1025
.
3.
Mellinger
,
D.
,
Kumar
,
V.
, and
Yim
,
M.
,
2009
, “
Control of Locomotion With Shape-Changing Wheels
,”
2019 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
1750
1755
.
4.
Teng
,
X. Y.
,
Li
,
Y. Z.
,
Liu
,
Y.
, and
Yao
,
Y. A.
,
2024
, “
Design and Reconfiguration Analysis of the Trunk Mechanism for a Reconfigurable Wheeled Mobile Platform
,”
ASME J. Mech. Rob.
,
16
(
5
), p.
054505
.
5.
Yim
,
M.
,
Latombe
,
J.
,
Cutkosky
,
M.
, and
Khatib
,
O.
,
1994
, “
Locomotion With a Unit-Modular Reconfigurable Robot
,” Department of Mechanical Engineering, Stanford University.
6.
Lee
,
W. H.
, and
Sanderson
,
A. C.
,
2002
, “
Dynamic Rolling Locomotion and Control of Modular Robots
,”
IEEE Trans. Rob. Autom.
,
18
(
1
), pp.
32
41
.
7.
Lyder
,
A.
,
Garcia
,
R.
, and
Støy
,
K.
,
2008
, “
Mechanism Design of Odin, an Extendable Heterogeneous Deformable Modular Robot
,”
Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems Acropolis Convention Center
,
Nice, France
,
Sept. 22–26
, pp.
883
888
.
8.
Zhang
,
F.
,
Yu
,
Y.
,
Wang
,
Q.
,
Zeng
,
X. Y.
, and
Niu
,
H. Q.
,
2019
, “
A Terrain-Adaptive Robot Prototype Designed for Bumpy-Surface Exploration
,”
Mech. Mach. Theory
,
141
, pp.
213
225
.
9.
Zhang
,
F.
,
Yu
,
Y.
,
Wang
,
Q.
, and
Zeng
,
X. Y.
,
2021
, “
Physics-Driven Locomotion Planning Method for a Planar Closed-Loop Terrain-Adaptive Robot
,”
Mech. Mach. Theory
,
162
, pp.
104353
.
10.
Wang
,
S. J.
, and
Dai
,
J. S.
,
2020
, “
Research on Metamorphic Self-Recovery Strategy and Characteristics of Metamorphic Quadruped Robots After Overturning
,”
China Mech. Eng.
,
32
(
11
), pp.
1274
1282
.
11.
Chai
,
X. H.
,
Kang
,
X.
,
Gan
,
D. M.
,
Yu
,
H. Y.
, and
Dai
,
J. S.
,
2021
, “
Six Novel 6R Metamorphic Mechanisms Induced From Three-Series-Connected Bennett Linkages That Vary Among Classical Linkages
,”
Mech. Mach. Theory
,
156
, pp.
104133
.
12.
Liu
,
C. H.
,
Li
,
R. M.
, and
Yao
,
Y. A.
,
2012
, “
An Omnidirectional Rolling 8U Parallel Mechanism
,”
ASME J. Mech. Rob.
,
4
(
3
), p.
034501
.
13.
Li
,
Y. Z.
,
Yao
,
Y. A.
,
Cheng
,
J. L.
,
Tian
,
Y. B.
, and
Liu
,
R.
,
2017
, “
An Agile Assistant Robot Integrating Operation and Rolling Locomotion
,”
Ind. Rob.
,
44
(
1
), pp.
114
126
.
14.
Tian
,
Y. B.
,
Zhang
,
D.
,
Yao
,
Y. A.
,
Kong
,
X. W.
, and
Li
,
Y. Z.
,
2017
, “
A Reconfigurable Multi-Mode Mobile Parallel Robot
,”
Mech. Mach. Theory
,
111
, pp.
39
65
.
15.
Li
,
Y. Z.
,
Yao
,
Y. A.
, and
He
,
Y. Y.
,
2018
, “
Design and Analysis of a Multi-Mode Mobile Robot Based on a Parallel Mechanism With Branch Variation
,”
Mech. Mach. Theory
,
130
, pp.
276
300
.
16.
Wei
,
X. Z.
,
Tian
,
Y. B.
, and
Wen
,
S. S.
,
2019
, “
Design and Locomotion Analysis of a Novel Modular Rolling Robot
,”
Mech. Mach. Theory
,
133
, pp.
23
43
.
17.
Tian
,
Y. B.
,
Kong
,
X. W.
,
Xu
,
K.
, and
Ding
,
X.
,
2021
, “
Multi-Loop Rover: A Kind of Modular Rolling Robot Constructed by Multi-Loop Linkages
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011012
.
18.
Park
,
S.
,
Bae
,
J.
,
Lee
,
S.
,
Yim
,
M.
,
Kim
,
J.
, and
Seo
,
T. W.
,
2020
, “
Polygon-Based Random Tree Search Planning for Variable Geometry Truss Robot
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
813
819
.
19.
Usevitch
,
N. S.
,
Hammond
,
Z. M.
,
Schwager
,
M.
,
Okamura
,
A. M.
,
Hawkes
,
E. W.
, and
Follmer
,
S.
,
2020
, “
An Untethered Isoperimetric Soft Robot
,”
Sci. Rob.
,
5
(
40
), pp.
1
14
.
20.
Wang
,
Z. R.
,
Li
,
Y. Z.
,
Su
,
B.
,
Jiang
,
L.
,
Zhao
,
Z. M.
, and
Yao
,
Y. A.
,
2021
, “
Design and Locomotion Analysis of the Tetrahedral Mobile Robot With Only Revolute Joints (TMRR)
,”
Ind. Rob.
,
48
(
4
), pp.
614
625
.
21.
Li
,
Y. Z.
,
Wang
,
Z. R.
,
Xu
,
Y. G.
,
Dai
,
J. S.
,
Zhao
,
Z. M.
, and
Yao
,
Y. A.
,
2020
, “
A Deformable Tetrahedron Rolling Mechanism (DTRM) Based on URU Branch
,”
Mech. Mach. Theory
,
153
, pp.
104000
.
22.
Zhao
,
Z. M.
,
Li
,
Y. Z.
,
Yao
,
Y. A.
,
Li
,
R. M.
, and
Zhang
,
Q. Q.
,
2021
, “
Obstacle-Crossing Gait Planning of a Tetrahedron Mobile Mechanism With 6-URU Branch
,”
J. Mech. Eng.
,
57
(
23
), pp.
85
96
.
23.
Zhao
,
Z. M.
,
Li
,
Y. Z.
,
Wu
,
J. X.
, and
Yao
,
Y. A.
,
2023
, “
Envelop-Climbing Locomotion Planning and Capability Analysis of a Deformable Tetrahedron Rolling Robot
,”
IEEE Robot. Autom. Lett.
,
8
(
8
), pp.
4625
4632
.
24.
Zhao
,
D.
,
Luo
,
H.
,
Tu
,
Y.
,
Meng
,
C.
, and
Lam
,
T. L.
,
2024
, “
Snail-Inspired Robotic Swarms: A Hybrid Connector Drives Collective Adaptation in Unstructured Outdoor Environments
,”
Nat. Commun.
,
15
(
1
), pp.
3647
.
25.
Holdcroft
,
K.
,
Bolotnikova
,
A.
,
Belke
,
C.
, and
Paik
,
J.
,
2022
, “
Modular Robot Networking: A Novel Schema and Its Performance Assessment
,”
Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Kyoto, Japan
,
Oct. 23–27
, pp.
12698
12705
.
26.
Wang
,
Y. J.
,
Wu
,
C. L.
,
Yu
,
L. Q.
, and
Mei
,
Y. Y.
,
2018
, “
Dynamics of a Rolling Robot of Closed Five-Arc-Shaped-Bar Linkage
,”
Mech. Mach. Theory
,
121
, pp.
75
91
.
27.
Baines
,
R. L.
,
Booth
,
J. W.
, and
Kramer-Bottiglio
,
R.
,
2020
, “
Rolling Soft Membrane-Driven Tensegrity Robots
,”
IEEE Robot. Autom. Lett.
,
5
(
4
), pp.
6567
6574
.
28.
Chung
,
Y. S.
,
Lee
,
J. H.
,
Jang
,
J. H.
,
Choi
,
H. R.
, and
Rodrigue
,
H.
,
2019
, “
Jumping Tensegrity Robot Based on Torsionally Prestrained SMA Springs
,”
ACS Appl. Mater. Interfaces
,
11
(
43
), pp.
40793
40799
.
29.
Wang
,
Z. J.
,
Li
,
K.
,
He
,
Q. G.
, and
Cai
,
S. Q.
,
2019
, “
A Light-Powered Ultralight Tensegrity Robot With High Deformability and Load Capacity
,”
Adv. Mater.
,
31
(
7
), p.
1806849
.
30.
Mansour
,
N. A.
,
Jang
,
T.
,
Baek
,
H.
,
Shin
,
B.
,
Ryu
,
B.
, and
Kim
,
Y.
,
2020
, “
Compliant Closed-Chain Rolling Robot Using Modular Unidirectional SMA Actuators
,”
Sens. Actuators, A
,
310
, pp.
112024
.
31.
Wang
,
W.
,
Kim
,
N. G.
,
Rodrigue
,
H.
, and
Ahn
,
S. H.
,
2017
, “
Modular Assembly of Soft Deployable Structures and Robots
,”
Mater. Horiz.
,
4
(
3
), pp.
367
376
.
32.
Li
,
W. B.
,
Zhang
,
W. M.
,
Zou
,
H. X.
,
Peng
,
Z. K.
, and
Meng
,
G.
,
2018
, “
A Fast Rolling Soft Robot Driven by Dielectric Elastomer
,”
IEEE/ASME Trans. Mechatron.
,
23
(
4
), pp.
1630
1640
.
33.
Sastra
,
J.
,
Chitta
,
S.
, and
Yim
,
M.
,
2009
, “
Dynamic Rolling for a Modular Loop Robot
,”
Int. J. Rob. Res.
,
28
(
6
), pp.
758
773
.
34.
Hu
,
S. H.
,
Liu
,
R.
,
Li
,
R. M.
,
Huang
,
T. Q.
,
Li
,
Y. Z.
, and
Yao
,
Y. A.
,
2023
, “
Design and Analysis of a Size-Tunable Tetrahedron Rolling Mechanism Based on Deployable RRR Chains
,”
Mech. Mach. Theory
,
183
, pp.
105284
.
35.
Tutsoy
,
O.
, and
Brown
,
M.
,
2016
, “
Chaotic Dynamics and Convergence Analysis of Temporal Difference Algorithms With Bang-Bang Control
,”
Optim. Control. Appl. Methods
,
37
(
1
), pp.
108
126
.
36.
Wu
,
J. X.
,
Guo
,
L.
,
Yan
,
S. Z.
,
Li
,
Y. Z.
, and
Yao
,
Y. A.
,
2021
, “
Design and Performance Analysis of a Novel Closed-Chain Elastic-Bionic Leg With One Actuated Degree of Freedom
,”
Mech. Mach. Theory
,
165
, pp.
104444
.
37.
Hao
,
Y. L.
,
Tian
,
Y. B.
,
Wu
,
J. X.
,
Li
,
Y. Z.
, and
Yao
,
Y. A.
,
2020
, “
Design and Locomotion Analysis of Two Kinds of Rolling Expandable Mobile Linkages With a Single Degree of Freedom
,”
Front. Mech. Eng.
,
15
(
3
), pp.
365
373
.
38.
Zhang
,
Q. Q.
,
Li
,
Y. Z.
,
Yao
,
Y. A.
, and
Li
,
R. M.
,
2020
, “
Design and Locomotivity Analysis of a Novel Deformable Two-Wheel-Like Mobile Mechanism
,”
Ind. Rob.
,
47
(
3
), pp.
369
380
.
39.
Kislassi
,
T.
, and
Zarrouk
,
D.
,
2019
, “
A Minimally Actuated Reconfigurable Continuous Track Robot
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
652
659
.
40.
Nodehi
,
S. E.
,
Bruzzone
,
L.
, and
Fanghella
,
P.
,
2022
, “SnakeTrack, a Bio-Inspired, Single Track Mobile Robot With Compliant Vertebral Column for Surveillance and Inspection,”
Advances in Service and Industrial Robotics
,
A.
Müller
and
M.
Brandstötter
, eds.,
Springer International Publishing
,
Berlin, Germany
, pp.
513
520
.
41.
Zhang
,
Q. Q.
,
Li
,
Y. Z.
,
Wu
,
J. X.
, and
Yao
,
Y. A.
,
2022
, “
Design and Analysis of a Hexagon Rolling Mechanism With a Center-Arranged Actuator
,”
Mech. Mach. Theory
,
174
, p.
104910
.
42.
Bruzzone
,
L.
,
Nodehi
,
S. E.
, and
Fanghella
,
P.
,
2024
, “
WheTLHLoc 4W: Small-Scale Inspection Ground Mobile Robot With Two Tracks, Two Rotating Legs, and Four Wheels
,”
J. Field Rob.
,
41
(
4
), pp.
1146
1166
.
43.
Takanishi
,
A.
,
Tochizawa
,
M.
,
Takeya
,
T.
,
Karaki
,
H.
, and
Kato
,
I.
,
1989
, “
Realization of Dynamic Biped Walking Stabilized With Trunk Motion Under Known External Force
,”
Proceedings of the 1989 Fourth International Conference on Advanced Robotics
,
Heidelberg, Germany
,
June 13–15
, pp.
299
310
.
You do not currently have access to this content.