Abstract

Motion-decoupling identification (MDI) for parallel mechanism (PM) is a significant issue in the analysis and design of PMs. In general, people use the Jacobian matrix method to determine whether a given PM has motion-decoupling property. However, the process of which is more complicated and time-consuming. Based on the topology analysis of the PMs, by examining the relationship between partial position and/or orientation (P/O) parameters of the moving platform and the position self-determinism of one actuated branch chain, a concise and practical determining criterion for the MDI of PMs is first presented in the article, i.e., if the partial P/O parameters of the moving platform of a PM can be obtained by one simple or hybrid branch chain that includes at least one actuated joint, the PM behaves certainly motion-decoupling property (either partial decoupling or complete decoupling). Then, a new method for MDI based on the determining criterion is presented. The method is proved to be consistent with the Jacobian matrix method but straightforward and simple. The method also can be used to identify whether a given planar or spatial PM has motion-decoupling property. This work provides an effective method for the motion-decoupling identification of PMs at the level of topology.

References

1.
Nosova
,
N. Y.
,
2020
, “A Review of the Parallel Structure Mechanisms With Kinematic Decoupling,”
Advanced Technologies in Robotics and Intelligent Systems. Mechanisms and Machine Science
, Vol.
80
,
S.
Misyurin
,
V.
Arakelian
, and
A.
Avetisyan
, eds.,
Springer
,
Cham
, pp.
247
255
.
2.
Innocenti
,
C.
, and
Parenti-Castelli
,
V.
,
1991
, “
Direct Kinematics of the 6-4 Fully Parallel Manipulator With Position and Orientation Uncoupled
,”
Proceedings of the European Robotics and Intelligent Systems Conference
,
Corfu, Greece
,
June 23–28
.
3.
Shen
,
H. P.
,
Xiong
,
K.
,
Meng
,
Q. M.
, and
Liu
,
A. X.
,
2016
, “
Research on Kinematic Decoupling Design Method and Application of Parallel Mechanism
,”
Trans. Chin. Soc. Agric. Mach.
,
47
(
6
), pp.
348
356
. DOI: 10.6041 /j. iss n.1000-1298.2016.06.046.
4.
Zhang
,
C. D.
, and
Song
,
S. M.
,
1992
, “
Forward Kinematics of a Class of Parallel (Stewart) Platforms With Closed-Form Solutions
,”
J. Robot. Syst.
,
9
(
1
), pp.
93
114
.
5.
Gogu
,
G.
,
2008
,
Structural Synthesis of Parallel Robots: Part 1: Methodology
,
Springer
,
Dordrecht
.
6.
Jin
,
Q.
, and
Yang
,
T. L.
,
2004
, “
Synthesis and Analysis of a Group of 3-DOF Partially Decoupled Parallel Manipulators
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
301
306
.
7.
Li
,
W. M.
,
Gao
,
F.
, and
Zhang
,
J. J.
,
2005
, “
A 3-DOF Translation Manipulator With Decoupled Geometry
,”
Robotics
,
23
(
6
), pp.
805
808
. DOI:10.1017/s0263574705001700
8.
Hang
,
L. B.
,
Wang
,
Y.
,
Wu
,
J.
,
Jin
,
Q.
, and
Yang
,
T. L.
,
2005
, “
Research on Decoupling Conditions of Spherical Parallel Mechanism Based on Topological Decoupling Criteria
,”
Chin. J. Mech. Eng.
,
41
(
9
), pp.
28
32
.
9.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2002
, “Computational Kinematics,”
Advances in Robot Kinematics
,
J.
Lenarcic
, and
F.
Thomas
, eds.,
Springer
,
Desdemaravia, Spain
, pp.
453
462
.
10.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2007
,
Type Synthesis of Parallel Mechanism
,
Springer-Verlag
,
Berlin
.
11.
Shen
,
H. P.
,
Zhao
,
Y. C.
,
Xu
,
K.
,
Zhang
,
Z.
, and
Yang
,
T. L.
,
2019
, “
Topology and Kinematic Design of a Reconfigurable, Partially Kinematically Decoupled Spatial n-Dimensional Translational 1-Dimensional Rotational Parallel Mechanism
,”
China Mech. Eng.
,
30
(
4
), pp.
413
422
. DOI:10.3969/j.issn.1004 -132 X.201 9.04.006.
12.
Tong
,
X.
,
Gao
,
F.
, and
Zhang
,
Y.
,
2010
, “
Research on the Decoupling of Main Motion Mechanism of the Manipulator
,”
Chin. J. Mech. Eng.
,
46
(
11
), pp.
14
20
.
13.
Hayward
,
V.
,
Nemri
,
C.
,
Chen
,
X. Z.
, and
Duplat
,
B.
,
1993
, “
Kinematic Decoupling in Mechanisms and Application to a Passive Hand Controller Design
,”
J. Robot. Syst.
,
10
(
5
), pp.
767
790
.
14.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2004
, “
Type Synthesis of Input-Output Decoupled Parallel Manipulators
,”
Trans. Can. Soc. Mech. Eng.
,
28
(
2A
), pp.
185
196
.
15.
Baron
,
L.
, and
Angeles
,
J.
,
2000
, “
The Kinematic Decoupling of Parallel Manipulators Using Joint-Sensor Data
,”
IEEE Trans. Rob. Autom.
,
16
(
6
), pp.
644
651
.
16.
Altuzarra
,
O.
,
Loizaga
,
M.
, and
Pinto
,
C.
,
2010
, “
Synthesis of Partially Decoupled Multi-Level Manipulators With Lower Mobility
,”
Mech. Mach. Theory
,
45
(
1
), pp.
106
118
.
17.
Briot
,
S.
, and
Bonev
,
I. A.
,
2010
, “
Pantopteron-4: A New 3T1R Decoupled Parallel Manipulator for Pick-and-Place Applications
,”
Mech. Mach. Theory
,
45
(
5
), pp.
707
721
.
18.
Briot
,
S.
,
Arakelian
,
V.
, and
Guégan
,
S.
,
2009
, “
PAMINSA: A New Family of Partially Decoupled Parallel Manipulators
,”
Mech. Mach. Theory
,
44
(
2
), pp.
425
444
.
19.
Glazunov
,
V.
,
2010
, “
Design of Decoupled Parallel Manipulators by Means of the Theory of Screws
,”
Mech. Mach. Theory
,
45
(
2
), pp.
239
250
.
20.
Hou
,
Y. L.
,
Lu
,
W. J.
, and
Zeng
,
D. X.
, “
Kinematically Decoupled 2-DOF Rotational Parallel Mechanism
,” Patent Application: 201010617042, 2010.12.24.
21.
Herve
,
J. M.
,
2006
, “
Uncoupled Actuation of Pan-Tilt Wrists
,”
IEEE Trans. Rob.
,
22
(
1
), pp.
56
64
.
22.
Marco
,
C.
, and
Vincenzo
,
P. C.
,
2004
, “
A Novel Fully Decoupled 2-DOF Parallel Wrist
,”
Int. J. Rob. Res.
,
23
(
6
), pp.
661
667
.
23.
Zhang
,
Y. B.
, and
Wu
,
X.
,
2008
, “
Design and Analysis of Uncoupled 3-DOF Parallel Mechanism
,”
Trans. Chin. Soc. Agric. Mach.
,
39
(
8
), pp.
208
210
. DOI:CNKI:SUN:NYJX.0.2008-08-051.
24.
Shen
,
H. P.
,
2021
,
Topological Characteristics-Based Kinematics for Robotic Mechanisms
,
Higher Education Press
,
Beijing
, p.
12
.
25.
Li
,
Q. C.
,
Wu
,
C. Y.
,
Shen
,
W. P.
,
Hu
,
X. D.
,
Zhu
,
Z. C.
, and
Huang
,
Z.
,
2006
, “
A Novel 3-PCRNS Spherical 3-DOF Parallel Mechanism
,”
Chin. J. Mech. Eng.
,
42
(
11
), pp.
44
47
.
26.
Shen
,
H. P.
,
Zhou
,
J. B.
,
You
,
J. J.
, and
Yang
,
T. L.
,
2020
, “
Optimization of 2T1R Parallel Mechanism With Analytic Positive Position Solution and Its Kinematic Performance
,”
Trans. Chin. Soc. Agric. Mach.
,
51
(
1
), pp.
398
409
. DOI:10.6041/j.issn.1000-1298.2020.01.044.
27.
Shen
,
H. P.
,
Zeng
,
B. X.
,
You
,
J. J.
,
Li
,
J.
,
Xu
,
Z. X.
, and
Yang
,
T. L.
,
2020
, “
Design and Analysis of a Three-Translation Parallel Mechanism With Analytic Positive Position Solution and Partial Motion Decoupling
,”
Trans. Chin. Soc. Agric. Mach.
,
51
(
2
), pp.
383
392
. DO I: 10.6041/j.issn.1000-1298.2020.02.042.
28.
Huang
,
K. W.
,
Shen
,
H. P.
, and
Yang
,
T. L.
,
2022
, “
Topological Design and Dynamic Modeling of a Spatial 2T1R Parallel Mechanism With Partial Motion Decoupling and Symbolic Positive-Solution
,”
China Mech. Eng.
,
33
(
2
), pp.
160
169
. DOI: 10.3969/j.issn.1004-132X.2022.02.005.
29.
Shen
,
H. P.
,
Zhao
,
Y. N.
,
Wu
,
G. L.
,
Li
,
J.
, and
Chablat
,
D.
,
2021
, “
Kinematic Design of a Translational Parallel Mechanism Based on Sub-Kinematic Chain Determined Workspace Superposition
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
235
(
24
), pp.
7534
7549
.
30.
Shen
,
H. P.
,
Zhao
,
Y. N.
,
Li
,
J.
,
Wu
,
G. L.
, and
Chablat
,
D.
,
2021
, “
A Novel Partially-Decoupled Translational Parallel Manipulator With Symbolic Kinematics, Singularity Identification and Workspace Determination
,”
Mech. Mach. Theory
,
164
(
1
), p.
104388
.
31.
Shen
,
H. P.
,
Chablat
,
D.
,
Zeng
,
B. X.
,
Li
,
J.
,
Wu
,
G. L.
, and
Yang
,
T. L.
,
2020
, “
A Translational Three-Degrees-of-Freedom Parallel Mechanism With Partial Motion Decoupling and Analytic Direct Kinematics
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021112
.
32.
Zeng
,
Q.
,
Fang
,
Y. F.
, and
Ehmann
,
K. F.
,
2011
, “
Design of a Novel 4-DOF Kinematic Tropic Hybrid Parallel Manipulator
,”
ASME Mech. Des.
,
133
(
12
), p.
121006
.
33.
Richard
,
P.-L.
,
Gosselin
,
C. M.
, and
Kong
,
X.
,
2007
, “
Kinematic Analysis and Prototyping of a Partially Decoupled 4-DOF 3T1R Parallel Manipulator
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
611
616
.
34.
Shen
,
H. P.
,
Xu
,
Z. X.
,
Xu
,
K.
,
Deng
,
J. M.
, and
Yang
,
T. L.
,
2019
, “
Design and Motion Analysis of 3T1R Parallel Mechanism With Zero Coupling and Partial Decoupling
,”
Trans. Chin. Soc. Agric. Mach.
,
50
(
4
), pp.
382
392
. DOI: 10.6041/j.issn.1000-1298.2019.04.044
35.
Shen
,
H. P.
,
Xu
,
K.
,
Yang
,
T. L.
, and
Deng
,
J. M.
,
2019
, “
Design and Analysis of a New 3T1R Parallel Manipulator 2-(Pa3R)3R With Zero Coupling Degree and Motion Decoupling
,”
J. Mech. Eng.
,
55
(
5
), pp.
53
64
.
36.
Shen
,
H. P.
,
Xu
,
Z. X.
,
Xu
,
K.
,
Deng
,
J. M.
, and
Yang
,
T. L.
,
2019
, “
Design and Analysis of 3T1R Parallel Mechanism With Low Coupling and Partial Decoupling
,”
Trans. Chin. Soc. Agric. Mach.
,
50
(
2
), pp.
373
383
. DOI:10. 6041/j. issn. 1000-1298. 2019. 02. 043
37.
Shen
,
H. P.
,
Xu
,
K.
, and
Yang
,
T. L.
,
2018
, “
Design and Motion Analysis of Parallel Mechanism for Kinematic Decoupling and Low Coupling Degree Compliant Assembly Robot Arm
,”
China Mech. Eng.
,
29
(
8
), pp.
883
892
.
38.
Shi
,
Z. X.
,
Luo
,
Y. F.
, and
Ye
,
M. Y.
,
2010
, “
A Novel 5-DOF Decoupled Parallel Robot Mechanism and Its Position Analysis
,”
Mach. Tool Hydraulics
,
38
(
17
), pp.
5
8
.
39.
Shen
,
H. P.
,
Huang
,
J.
,
Zhu
,
S. S.
, and
Deng
,
J. M.
,
2016
, “
Novel Topological Structure and Properties for 5-SPS Parallel Mechanism With Linear Moving Platform
,”
Trans. Chin. Soc. Agric. Mach.
,
47
(
6
), pp.
357
365
. DOI: 10.6041/j.issn.1000-1298.2016.06.047
40.
Shen
,
H. P.
,
Xu
,
Q.
, and
Meng
,
Q. M.
, “
A Two-Translation and Three-Rotation Parallel Mechanism With Zero Coupling Degree and Forward Position Analysis and Motion Decoupling
,” ZL202010111968.7.2020-06-05.
41.
Shen
,
H. P.
,
Huang
,
T.
, and
Deng
,
J. M.
, “
A Double Parallel 6-DOF Motion Platform With Position and Attitude Decoupling
,” ZL201210323495.2, 2015.4.15.
42.
Wang
,
Z.
, and
Shen
,
H. P.
,
2012
, “
An Easily Manufactured 6-DOF 3-1-1-1 SPS Type Parallel Mechanism and its Forward Kinematics
,”
Second IFToMM Symposium on Mechanism Design for Robotics
,
Beijing, China
,
July 16–18
.
43.
Jin
,
Y.
,
Chen
,
I. M.
, and
Yang
,
G. L.
,
2006
, “
Kinematic Design of a 6-DOF Parallel Manipulator With Decoupled Translation and Rotation
,”
IEEE Trans. Rob.
,
22
(
3
), pp.
545
551
.
44.
Yu
,
T. Z.
, and
Shen
,
H. P.
,
2012
, “
An Easily Manufactured Structure and Its Analytic Solutions for Forward and Inverse Position of 1-2-3-SPS Type 6-DOF Basic Parallel Mechanisms
,”
2012 IEEE International Conference on Robotics and Biomimetics
,
Guangzhou, China
,
Dec. 2012
.
45.
Legnani
,
G.
,
Fassi
,
I.
,
Giberti
,
H.
,
Cinquemani
,
S.
, and
Tosi
,
D.
,
2012
, “
A New Isotropic and Decoupled 6-DOF Parallel Manipulator
,”
Mech. Mach. Theory
,
58
(
3
), pp.
64
81
.
46.
Shen
,
H. P.
,
2025
,
Topological Analysis of Parallel Robotic Mechanisms – Methods, Techniques and Applications
,
Jiangsu Phoenix Education Press
,
Nanjing
.
47.
Shen
,
H. P.
,
Zhu
,
X. R.
,
Yin
,
H. B.
,
Li
,
J.
, and
Deng
,
J. M.
,
2016
, “
Structure Decoupling Principle and Design Method of Parallel Mechanism
,”
Chin. J. Mech. Eng.
,
52
(
23
), pp.
102
113
. DO I: 10.3901/JME.2016.23.102
48.
Yang
,
T. L.
,
Liu
,
A. X.
,
Luo
,
Y. F.
,
Shen
,
H. P.
,
Hang
,
L. B.
, and
Jin
,
Q.
,
2012
,
Theory and Application of Robot Mechanism Topology
,
Science Press
,
Beijing
.
49.
Yang
,
T. L.
,
Liu
,
A. X.
,
Shen
,
H. P.
,
Hang
,
L. B.
,
Luo
,
Y. F.
, and
Jin
,
Q.
,
2018
,
Topology Design of Robot Mechanisms
,
Springer
,
New York
.
50.
Shen
,
H. P.
,
Li
,
J.
,
Zhu
,
X. R.
,
Li
,
T.
,
Meng
,
Q. M.
,
Zhu
,
W.
, and
Ye
,
P. D.
,
2024
, “
A New Method and Formula for Degree-of-Freedom Calculation of Parallel Mechanism Based on Optimal Loops
,”
Chin. J. Mech. Eng.
,
60
(
19
), pp.
42
50
. DOI:10.3901/JME.2024.19.040
51.
Ji
,
H.
,
2020
,
Kinematics Analysis, Performance Evaluation, and Optimization of Two New Parallel Mechanisms With Positive Symbolic Position Solutions
,
Changzhou University
,
Changzhou, China
.
52.
Shi
,
Z. X.
,
Ye
,
M. Y.
,
Luo
,
Y. F.
, and
Yang
,
T. L.
,
2017
, “
Structure Synthesis and Position Analysis of 4-DOF Two-Mode Parallel Mechanism
,”
Trans. Chin. Soc. Agric. Mach.
,
48
(
4
), pp.
383
389
. DOI: 10.6041/j.issn.1000-1298.2017.04.051
53.
Kuo
,
C. H.
, and
Dai
,
J. S.
,
2021
, “
Structure Synthesis of a Class of Parallel Manipulators With Fully Decoupled Projective Motion
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031011
.
54.
Jin
,
Y.
,
Chen
,
I. M.
, and
Yang
,
G. L.
,
2009
, “
Kinematic Design of a Family of 6-DOF Partially Decoupled Parallel Manipulators
,”
Mech. Mach. Theory
,
44
(
5
), pp.
912
922
.
55.
Kong
,
X. W.
, and
Gosselin
,
C. M.
,
2008
, “
Type Synthesis of Six-DOF Wrist-Partitioned Parallel Manipulators
,”
ASME J. Mech. Des.
,
130
(
6
), p.
062302
.
56.
Merlet
,
J. P.
,
2016
,
Translated by Y.C. Huang, Parallel Robots
, 2nd edn.,
China Machine Press
,
Beijing
.
57.
Shen
,
H. P.
,
Li
,
J.
,
Wu
,
G. L.
, and
Deng
,
J. M.
,
2025
,
Topological Structure Optimization for Parallel Robotic Mechanisms
,
Higher Education Press
,
Beijing
.
You do not currently have access to this content.