Mainly drawing on screw theory and linear algebra, this paper presents an approach to determining the bases of three unknown twist and wrench subspaces of lower mobility serial kinematic chains, an essential step for kinematic and dynamic modeling of both serial and parallel manipulators. By taking the reciprocal product of a wrench on a twist as a linear functional, the underlying relationships among their subspaces are reviewed by means of the dual space and dual basis. Given the basis of a twist subspace of permissions, the causes of nonuniqueness in the bases of the other three subspaces are discussed in some depth. Driven by needs from engineering design, criteria, and a procedure are proposed that enable pragmatic, consistent bases of these subspaces to be determined in a meaningful, visualizable, and effective manner. Three typical examples are given to illustrate the entire process. Then, formulas are presented for the bases of the twist/wrench subspaces of a number of commonly used serial kinematic chains, which can readily be employed for the formulation of the generalized Jacobian of a variety of lower mobility parallel manipulators.

References

1.
Whiteney
,
D. E.
,
1972
, “
The Mathematics of Coordinated Control of Prosthetic Arms and Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
94
(
4
), pp.
303
309
.10.1115/1.3426611
2.
Merlet
,
J. P.
,
2006
,
Parallel Robots, Solid Mechanics and Its Applications
, 2nd ed., Vol.
128
,
Springer
, Dordrecht,
The Netherlands
.
3.
Angeles
,
J.
,
2007
,
Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms, Mechanical Engineering Series
, 3rd ed., Vol.
1
,
Springer Science + Business Media
,
New York
.
4.
Tsai
,
L. W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley
,
New York
.
5.
Merlet
,
J. P.
,
2006
, “
Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
199
206
.10.1115/1.2121740
6.
Huang
,
T.
,
Liu
,
H. T.
, and
Chetwynd
,
D. G.
,
2011
, “
Generalized Jacobian Analysis of Lower Mobility Manipulators
,”
Mech. Mach. Theory
,
46
(
6
), pp.
831
844
.10.1016/j.mechmachtheory.2011.01.009
7.
Hunt
,
K. H.
,
1978
,
Kinematic Geometry of Mechanisms
,
Oxford University Press
,
Oxford, UK
.
8.
Sugimoto
,
K.
, and
Duffy
,
J.
,
1982
, “
Applications of Linear Algebra to Screw Systems
,”
Mech. Mach. Theory
,
17
(
1
), pp.
73
83
.10.1016/0094-114X(82)90025-8
9.
Kerr
,
D.
R.
, and
Sanger
,
D. J.
,
1989
, “
The Inner Product in the Evaluation of Reciprocal Screws
,”
Mech. Mach. Theory
,
24
(
2
), pp.
87
92
.10.1016/0094-114X(89)90014-1
10.
Samuel
,
A. E.
,
McAree
,
P. R.
, and
Hunt
,
K. H.
,
1991
, “
Unifying Screw Geometry and Matrix Transformations
,”
Int. J. Rob. Res.
,
10
(
5
), pp.
454
472
.10.1177/027836499101000502
11.
Rico-Martínez
,
J. M.
, and
Duffy
,
J.
,
1992
, “
Orthogonal Spaces and Screw Systems
,”
Mech. Mach. Theory
,
27
(
4
), pp.
451
458
.10.1016/0094-114X(92)90036-H
12.
Joshi
,
S. A.
, and
Tsai
,
L. W.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
254
258
.10.1115/1.1469549
13.
Kim
,
D.
, and
Chung
,
W. K.
,
2003
, “
Analytic Formulation of Reciprocal Screws and Its Applications to Nonredundant Robot Manipulators
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
158
164
.10.1115/1.1539508
14.
Hunt
,
K. H.
,
2004
,
Robots and Screw Theory: Applications of Kinematics and Statics to Robotics
,
Oxford University Press
,
Oxford, UK
.
15.
Fang
,
Y. F.
, and
Tsai
,
L. W.
,
2002
, “
Structure Synthesis of a Class of 4-DOF and 5-DOF Parallel Manipulators With Identical Limb Structures
,”
Int. J. Rob. Res.
,
21
(
9
), pp.
799
810
.10.1177/0278364902021009314
16.
Fang
,
Y. F.
, and
Tsai
,
L. W.
,
2004
, “
Structure Synthesis of a Class of 3-DOF Rotational Parallel Manipulators
,”
IEEE Trans. Rob. Autom.
,
20
(
1
), pp.
117
121
.10.1109/TRA.2003.819597
17.
Bonev
,
L. A.
,
Zlatanov
,
D.
, and
Gosselin
,
C. M.
,
2003
, “
Singularity Analysis of 3-DOF Planar Parallel Mechanisms Via Screw Theory
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
573
581
.10.1115/1.1582878
18.
Carricato
,
M.
,
2005
, “
Fully Isotropic Four-Degrees-of-Freedom Parallel Mechanisms for Schoenflies Motion
,”
Int. J. Rob. Res.
,
24
(
5
), pp.
397
414
.10.1177/0278364905053688
19.
Li
,
Y. M.
, and
Xu
,
Q. S.
,
2007
, “
Design and Development of a Medical Parallel Robot for Cardiopulmonary Resuscitation
,”
IEEE/ASME Trans. Mechatron.
,
12
(
3
), pp.
265
273
.10.1109/TMECH.2007.897257
20.
Gallardo-Alvarado
,
J.
,
Aguilar-Nájera
,
C. R.
,
Casique-Rosas
,
L.
,
Rico-Martínez
,
J. M.
, and
Islam
,
M. N.
,
2008
, “
Kinematics and Dynamics of 2(3-RPS) Manipulators by Means of Screw Theory and the Principle of Virtual Work
,”
Mech. Mach. Theory
,
43
(
10
), pp.
1281
1294
.10.1016/j.mechmachtheory.2007.10.009
21.
Li
,
Y. M.
, and
Xu
,
Q. S.
,
2008
, “
Stiffness Analysis for a 3-PUU Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
43
(
2
), pp.
186
200
.10.1016/j.mechmachtheory.2007.02.002
22.
Liu
,
H. T.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2011
, “
A Method to Formulate a Dimensionally Homogeneous Jacobian of Parallel Manipulators
,”
IEEE Trans. Rob.
,
27
(
1
), pp.
150
156
.10.1109/TRO.2010.2082091
23.
Liu
,
H. T.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2011
, “
An Approach for Acceleration Analysis of Lower Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011013
.10.1115/1.4003271
24.
Liu
,
H. T.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2011
, “
A General Approach for Geometric Error Modeling of Lower Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021013
.10.1115/1.4003845
25.
Liu
,
H. T.
,
Li
,
Y. G.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2011
, “
An Approach for Stiffness Modeling of Lower Mobility Parallel Manipulators Using the Generalized Jacobian
,”
13th World Congress in Mechanism and Machine Science
,
Guanajuato
,
Mexico
, June 19–25, p.
A12_347-1
.
26.
Dai
,
J.
S.
, and
Jones
,
J. R.
,
2002
, “
Null-Space Construction Using Cofactors From a Screw-Algebra Context
,”
Proc. R. Soc. London, Ser. A
,
458
(
2024
), pp.
1845
1866
.10.1098/rspa.2001.0949
27.
Meyer
,
C. D.
,
2000
,
Matrix Analysis and Applied Linear Algebra
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
28.
Dai
,
J. S.
, and
Jones
,
J. R.
,
2003
, “
A Linear Algebraic Procedure in Obtaining Reciprocal Screw Systems
,”
J. Rob. Syst.
,
20
(
7
), pp.
401
412
.10.1002/rob.10094
29.
Angeles
,
J.
, and
Chen
,
C.
,
2007
, “
Generalized Transmission Index and Transmission Quality for Spatial Linkages
,”
Mech. Mach. Theory
,
42
(
9
), pp.
1225
1237
.10.1016/j.mechmachtheory.2006.08.001
30.
Arnold
,
V.
,
1989
,
Mathematical Methods of Classical Mechanics
, 2nd ed.,
Springer-Verlag
,
Berlin
.
31.
Abraham
,
R.
, and
Marsden
,
J. E.
,
1994
,
Foundations of Mechanics
, 2nd ed.,
Addison Wesley
,
Menlo Park, CA
.
32.
Selig
,
J. M.
, and
McAree
,
P. R.
,
1996
, “
A Simple Approach to Invariant Hybrid Control
,”
1996 IEEE International Conference on Robotics and Automation (ICAR’ 96)
,
Minneapolis
,
MN
, Apr. 22–28, pp.
2238
2245
.
33.
Featherstone
,
R.
,
2000
, “
On the Limits to Invariance in the Twist/Wrench and Motor Representations of Motion and Force Vectors
,”
Symposium Commemorating the Legacy, Works, and Life of Sir Robert Stawell Ball Upon the 100th Anniversary of A Treatise on the Theory of Screws
,
Trinity College, University of Cambridge
,
Cambridge, UK
, July 9–11.
34.
Featherstone
,
R.
,
2003
, “
A Dynamic Model of Contact Between a Robot and an Environment With Unknown Dynamics
,”
Robotics Research, Springer Tracts in Advanced Robotics
, Vol.
6
,
A. J.
Raymond
and
Z.
Alexandar
, eds.,
Springer-Verlag
,
Berlin
, pp.
433
446
.
35.
Lax
,
P. D.
,
2007
,
Linear Algebra and Its Applications
, 2nd ed.,
Wiley
,
New York
, pp.
1
31
.
36.
Angeles
,
J.
,
1994
, “
On Twist and Wrench Generators and Annihilators
,”
Computer-Aided Analysis of Rigid and Flexible Mechanical Systems
,
M.
Seabra Pereira
and
J. C.
Ambrósio
, eds.,
Kluwer Academic Publishers B.V., Dordrecht
,
The Netherlands
, pp.
379
411
.
37.
Huang
,
Z.
, and
Li
,
Q. C.
,
2002
, “
General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators
,”
Int. J. Rob. Res.
,
21
(
2
), pp.
131
145
.10.1177/027836402760475342
38.
Huang
,
Z.
, and
Li
,
Q. C.
,
2003
, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,”
Int. J. Rob. Res.
,
22
(
1
), pp.
59
79
.10.1177/0278364903022001005
39.
Kong
,
X. W.
, and
Gosselin
,
C. M.
,
2007
,
Type Synthesis of Parallel Mechanisms Springer Tracts in Advanced Robotics
, Vol.
33
,
Springer-Verlag
,
Berlin
, pp.
19
83
.
40.
Hervé
,
J. M.
, and
Sparacino
,
F.
,
1991
, “
Structural Synthesis of ‘Parallel’ Robots Generating Spatial Translation
,”
5th International Conference on Advanced Robotics (ICAR’ 91)
,
Pisa
,
Italy
, June 19–22, pp.
808
813
.
41.
Hervé
,
J. M.
,
1999
, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
,
34
(
5
), pp.
719
730
.10.1016/S0094-114X(98)00051-2
You do not currently have access to this content.