Passive properties of the human hands, defined by the joint stiffness and damping, play an important role in hand biomechanics and neuromuscular control. Introduction of mechanical element that generates humanlike passive properties in a robotic form may lead to improved grasping and manipulation abilities of the next generation of robotic hands. This paper presents a novel mechanism, which is designed to conduct experiments with the human subjects in order to develop mathematical models of the passive properties at the metacarpophalangeal (MCP) joint. We designed a motor-driven system that integrates with a noninvasive and infrared motion capture system, and can control and record the MCP joint angle, angular velocity, and passive forces of the MCP joint in the index finger. A total of 19 subjects participated in the experiments. The modular and adjustable design was suitable for variant sizes of the human hands. Sample results of the viscoelastic moment, hysteresis loop, and complex module are presented in the paper. We also carried out an error analysis and a statistical test to validate the reliability and repeatability of the mechanism. The results show that the mechanism can precisely collect kinematic and kinetic data during static and dynamic tests, thus allowing us to further understand the insights of passive properties of the human hand joints. The viscoelastic behavior of the MCP joint showed a nonlinear dependency on the frequency. It implies that the elastic and viscous component of the hand joint coordinate to adapt to the external loading based on the applied frequency. The findings derived from the experiments with the mechanism can provide important guidelines for design of humanlike compliance of the robotic hands.

References

1.
Deshpande
,
A.
,
Balasubramanian
,
R.
,
Ko
,
J.
, and
Matsuoka
,
Y.
,
2010
, “
Acquiring Variable Moment Arms for Index Finger Using a Robotic Testbed
,”
IEEE Trans. Biomed. Eng.
,
57
(
8
), pp.
2034
2044
.10.1109/TBME.2010.2048326
2.
Deshpande
,
A.
,
Gialias
,
N.
, and
Matsuoka
,
Y.
,
2012
, “
Contributions of Intrinsic Visco-Elastic Torques During Planar Index Finger and Wrist Movements
,”
IEEE Trans. Biomed. Eng.
,
59
(
2
), pp.
586
594
.10.1109/TBME.2011.2178240
3.
Ketchum
,
L.
, and
Thompson
,
D.
,
1993
, “
An Experimental Investigation Into the Forces Internal to the Human Hand
,”
Clinical Mechanics of the Hand
,
Mosby
,
St. Louis, MO
, pp.
325
331
.
4.
Jacobson
,
M.
,
Raab
,
R.
,
Fazeli
,
B.
,
Abrams
,
R.
,
Botte
,
M.
, and
Lieber
,
R.
,
1992
, “
Architectural Design of the Human Intrinsic Hand Muscles
,”
J. Hand Surg.
,
17
(
5
), pp.
804
809
.10.1016/0363-5023(92)90446-V
5.
Vigouroux
,
L.
,
Quaine
,
F.
,
Labarre-Vila
,
A.
, and
Moutet
,
F.
,
2006
, “
Estimation of Finger Muscle Tendon Tensions and Pulley Forces During Specific Sport-Climbing Grip Techniques
,”
J. Biomech.
,
39
(
14
), pp.
2583
2592
.10.1016/j.jbiomech.2005.08.027
6.
Qin
,
J.
,
Lee
,
D.
,
Li
,
Z.
,
Chen
,
H.
, and
Dennerlein
,
J.
,
2010
, “
Estimating In Vivo Passive Forces of the Index Finger Muscles: Exploring Model Parameters
,”
J. Biomech.
,
43
(
7
), pp.
1358
1363
.10.1016/j.jbiomech.2010.01.014
7.
Prilutsky
,
B.
, and
Zatsiorsky
,
V.
,
1994
, “
Tendon Action of Two-Joint Muscles: Transfer of Mechanical Energy Between Joints During Jumping, Landing, and Running
,”
J. Biomech.
,
27
(
1
), pp.
25
34
.10.1016/0021-9290(94)90029-9
8.
Zajac
,
F.
,
Neptune
,
R.
, and
Kautz
,
S.
,
2002
, “
Biomechanics and Muscle Coordination of Human Walking: Part I: Introduction to Concepts, Power Transfer, Dynamics and Simulations
,”
Gait Posture
,
16
(
3
), pp.
215
232
.10.1016/S0966-6362(02)00068-1
9.
Zajac
,
F.
,
Neptune
,
R.
, and
Kautz
,
S.
,
2003
, “
Biomechanics and Muscle Coordination of Human Walking: Part II: Lessons From Dynamical Simulations and Clinical Implications
,”
Gait Posture
,
17
(
1
), pp.
1
17
.10.1016/S0966-6362(02)00069-3
10.
Dollar
,
A.
,
Jentoft
,
L.
,
Gao
,
J.
, and
Howe
,
R.
,
2010
, “
Contact Sensing and Grasping Performance of Compliant Hands
,”
Auton. Rob.
,
28
(
1
), pp.
65
75
.10.1007/s10514-009-9144-9
11.
Carrozza
,
M.
,
Suppo
,
C.
,
Sebastiani
,
F.
,
Massa
,
B.
,
Vecchi
,
F.
,
Lazzarini
,
R.
,
Cutkosky
,
M.
, and
Dario
,
P.
,
2004
, “
The Spring Hand: Development of a Self-Adaptive Prosthesis for Restoring Natural Grasping
,”
Auton. Rob.
,
16
(
2
), pp.
125
141
.10.1023/B:AURO.0000016863.48502.98
12.
Lotti
,
F.
,
Tiezzi
,
P.
,
Vassura
,
G.
,
Biagiotti
,
L.
,
Palli
,
G.
, and
Melchiorri
,
C.
,
2005
, “
Development of UB Hand 3: Early Results
,”
IEEE International Conference on Robotics and Automation
(
ICRA 2005
), Barcelona, Spain, Apr. 18–22, pp.
4488
4493
.10.1109/ROBOT.2005.1570811
13.
Pylatiuk
,
C.
,
Mounier
,
S.
,
Kargov
,
A.
,
Schulz
,
S.
, and
Bretthauer
,
G.
,
2004
, “
Progress in the Development of a Multifunctional Hand Prosthesis
,”
26th International Conference of the IEEE Engineering in Medicine and Biology Society
(
IEMBS '04
), San Francisco, CA, Sept. 1–5, Vol.
2
, pp.
4260
4263
.10.1109/IEMBS.2004.1404187
14.
Kargov
,
A.
,
Ivlev
,
O.
,
Pylatiuk
,
C.
,
Asfour
,
T.
,
Schulz
,
S.
,
Gräser
,
A.
,
Dillmann
,
R.
, and
Bretthauer
,
G.
,
2007
, “
Applications of a Fluidic Artificial Hand in the Field of Rehabilitation
,”
Rehabilitation Robotics
, S. S. Kommu, ed., InTech,
Wien
, Germany, pp.
261
286
.
15.
Grebenstein
,
M.
, and
van der Smagt
,
P.
,
2008
, “
Antagonism for a Highly Anthropomorphic Handarm System
,”
Adv. Rob.
,
22
(
1
), pp.
39
55
.10.1163/156855308X291836
16.
Grebenstein
,
M.
,
Chalon
,
M.
,
Hirzinger
,
G.
, and
Siegwart
,
R.
,
2010
, “
Antagonistically Driven Finger Design for the Anthropomorphic DLR Hand Arm System
,”
IEEE-RAS International Conference on Humanoid Robots
, Nashville, TN, Dec. 6–8, pp.
609
616
.10.1109/ICHR.2010.5686342
17.
Elhassan
,
B.
,
Mcneal
,
D.
,
Wynn
,
S.
,
Gonzalez
,
M.
, and
Amirouch
,
F.
,
2006
, “
Experimental Investigation of Finger Dynamics Before and After Metacarpophalangeal Joint Arthroplasty
,”
J. Hand Surg.
,
31
(
2
), pp.
228
235
.10.1016/j.jhsa.2005.09.015
18.
Minami
,
A.
,
An
,
K.
,
Wp
,
C.
,
Linscheid
,
R.
, and
Chao
,
E.
,
1985
, “
Ligament Stability of the Metacarpophalangeal Joint: A Biomechanical Study
,”
J. Hand Surg.
,
10
(
2
), pp.
255
260
.10.1016/S0363-5023(85)80117-9
19.
Shrivastava
,
N.
,
Koff
,
M.
,
Abbot
,
A.
,
Mow
,
V.
,
Rosenwasser
,
M.
, and
Strauch
,
R.
,
2003
, “
Simulated Extension Osteotomy of the Thumb Metacarpal Reduces Carpometacarpal Joint Laxity in Lateral Pinch
,”
J. Hand Surg.
,
28
(
5
), pp.
733
738
.10.1016/S0363-5023(03)00256-9
20.
Kuo
,
P.
, and
Deshpande
,
A.
,
2012
, “
Muscle-Tendon Units Provide Limited Contributions to the Passive Stiffness of the Index Finger Metacarpophalangeal Joint
,”
J. Biomech.
,
45
(
11
), pp.
2531
2538
.10.1016/j.jbiomech.2012.07.034
21.
Knutson
,
J. S.
,
Kilgore
,
K. L.
,
Mansour
,
J. M.
, and
Crago
,
P. E.
,
2000
, “
Intrinsic and Extrinsic Contributions to the Passive Moment at the Metacarpophalangeal Joint
,”
J. Biomech.
,
33
(
12
), pp.
1675
1681
.10.1016/S0021-9290(00)00159-7
22.
Kamper
,
D.
,
Fischer
,
H.
, and
Cruz
,
E.
,
2006
, “
Impact of Finger Posture on Mapping From Muscle Activation to Joint Torque
,”
Clin. Biomech.
,
21
(
4
), pp.
361
369
.10.1016/j.clinbiomech.2005.11.005
23.
Esteki
,
A.
, and
Mansour
,
J.
,
1996
, “
An Experimentally Based Nonlinear Viscoelastic Model of Joint Passive Moment
,”
J. Biomech.
,
29
(
4
), pp.
443
450
.10.1016/0021-9290(95)00081-X
24.
Esteki
,
A.
, and
Mansour
,
J.
,
1997
, “
A Dynamic Model of the Hand With Application in Functional Neuromuscular Stimulation
,”
Ann. Biomed. Eng.
,
25
(
3
), pp.
440
451
.10.1007/BF02684185
25.
Kamper
,
D.
,
George Hornby
,
T.
, and
Rymer
,
W.
,
2002
, “
Extrinsic Flexor Muscles Generate Concurrent Flexion of all Three Finger Joints
,”
J. Biomech.
,
35
(
12
), pp.
1581
1589
.10.1016/S0021-9290(02)00229-4
26.
Kuo
,
P.-H.
,
Hayes
,
J.
, and
Deshpande
,
A.
,
2011
, “
Design of a Motor-Driven Mechanism to Conduct Experiments to Determine the Passive Joint Properties of the Human Index Finger
,”
ASME
Paper No. DETC2011-48009. 10.1115/DETC2011-48009
27.
Lieber
,
R.
,
Jacobson
,
M.
,
Fazeli
,
B.
,
Abrams
,
R.
, and
Botte
,
M.
,
1992
, “
Architecture of Selected Muscles of the Arm and Forearm: Anatomy and Implications for Tendon Transfer
,”
J. Hand Surg.
,
17
(
5
), pp.
787
798
.10.1016/0363-5023(92)90444-T
28.
Latash
,
M.
, and
Zatsiorsky
,
V.
,
1993
, “
Joint Stiffness: Myth or Reality?
,”
Hum. Mov. Sci.
,
12
(
6
), pp.
653
692
.10.1016/0167-9457(93)90010-M
29.
Halvorsen
,
K.
,
Lesser
,
M.
, and
Lundberg
,
A.
,
1999
, “
A New Method for Estimating the Axis of Rotation and the Center of Rotation
,”
J. Biomech.
,
32
(
11
), pp.
1221
1227
.10.1016/S0021-9290(99)00120-7
30.
Chaffin
,
D.
,
Andersson
,
G.
, and
Martin
,
B.
,
2006
,
Occupational Biomechanics
,
Wiley
,
New York
.
31.
Matsuoka
,
Y.
, and
Afshar
,
P.
,
2004
, “
Neuromuscular Strategies for Dynamic Finger Movements: A Robotic Approach
,”
26th IEEE Engineering in Medicine and Biology Society
(
IEMBS '04
), San Francisco, CA, Sept. 1–5, pp.
4639
4642
.10.1109/IEMBS.2004.1404288
32.
Kuo
,
P.-H.
, and
Deshpande
,
A. D.
,
2013
, “
Novel Design of a Passive Variable Stiffness Joint Mechanism: Inspiration From Biomechanics of Hand Joints
,”
ASME
Paper No. DSCC2013-3980. 10.1115/DSCC2013-3980
33.
Nordez
,
A.
,
Casari
,
P.
, and
Cornu
,
C.
,
2008
, “
Effects of Stretching Velocity on Passive Resistance Developed by the Knee Musculo-Articular Complex: Contributions of Frictional and Viscoelastic Behaviours
,”
Eur. J. Appl. Physiol.
,
103
(
2
), pp.
243
250
.10.1007/s00421-008-0695-9
34.
Hsieh
,
T.
,
Tsai
,
J.
,
Wu
,
Y.
,
Hwang
,
I.
,
Chen
,
T.
, and
Chen
,
J.
,
2010
, “
Time Course Quantification of Spastic Hypertonia Following Spinal Hemisection in Rats
,”
Neuroscience
,
167
(
1
), pp.
185
198
.10.1016/j.neuroscience.2010.01.064
35.
Lee
,
H.-M.
,
Chen
,
J.-J. J.
,
Ju
,
M.-S.
,
Lin
,
C.-C. K.
, and
Poon
,
P. P.
,
2004
, “
Validation of Portable Muscle Tone Measurement Device for Quantifying Velocity-Dependent Properties in Elbow Spasticity
,”
J. Electromyogr. Kinesiol.
,
14
(
5
), pp.
577
589
.10.1016/j.jelekin.2004.02.002
36.
Lee
,
H.-M.
,
Chen
,
J.-J. J.
,
Wu
,
Y.-N.
,
Wang
,
Y.-L.
,
Huang
,
S.-C.
, and
Piotrkiewicz
,
M.
,
2008
, “
Time Course Analysis of the Effects of Botulinum Toxin Type A on Elbow Spasticity Based on Biomechanic and Electromyographic Parameters
,”
Arch. Phys. Med. Rehabil.
,
89
(
4
), pp.
692
699
.10.1016/j.apmr.2007.08.166
37.
Diftler
,
M.
,
Mehling
,
J.
,
Abdallah
,
M.
,
Radford
,
N.
,
Bridgwater
,
L.
,
Sanders
,
A.
,
Askew
,
R.
,
Linn
,
D.
,
Yamokoski
,
J.
,
Permenter
,
F.
,
Hargrave
,
B.
,
Platt
,
R.
,
Savely
,
R.
, and
Ambrose
,
R.
,
2011
, “
Robonaut 2—The First Humanoid Robot in Space
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Shanghai, China, May 9–13, pp.
2178
2183
.10.1109/ICRA.2011.5979830
38.
Lakes
,
R. S.
,
2009
,
Viscoelastic Materials
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.