In this paper, we extend the principles of the freedom and constraint topologies (FACT) synthesis approach such that designers can analyze and synthesize serial flexure elements—not to be confused with serial flexure systems. Unlike serial systems, serial elements do not possess intermediate rigid bodies within their geometry and thus avoid the negative effects of unnecessary mass and underconstrained bodies that generate uncontrolled vibrations. Furthermore, in comparison with other common parallel flexure elements such as wire, blade, and living hinge flexures, serial elements can be used within flexure systems to achieve (i) a larger variety of kinematics, (ii) more dynamic and elastomechanic versatility, and (iii) greater ranges of motion. Here, we utilize the principles of FACT to intuitively guide designers in visualizing a multiplicity of serial flexure element geometries that can achieve any desired set of degrees of freedom (DOFs). Using this approach, designers can rapidly generate a host of new serial flexure elements for synthesizing advanced flexure systems. Thirty seven serial flexure elements are provided as examples, and three flexure systems that consist of some of these elements are synthesized as case studies.

References

1.
Soemers
,
H. M. J. R.
,
2010
,
Design Principles for Precision Mechanisms
,
T-Point Print
,
Enschede, The Netherlands
.
2.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part I: Principles
,”
Precis. Eng.
,
34
(
2
), pp.
259
270
.10.1016/j.precisioneng.2009.06.008
3.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2010
, “
Synthesis of Multi-Degree of Freedom, Parallel Flexure System Concepts Via Freedom and Constraint Topology (FACT)—Part II: Practice
,”
Precis. Eng.
,
34
(
2
), pp.
271
278
.10.1016/j.precisioneng.2009.06.007
4.
Hopkins
,
J. B.
, and
Culpepper
,
M. L.
,
2011
, “
Synthesis of Precision Serial Flexure Systems Using Freedom and Constraint Topologies (FACT)
,”
Precis. Eng.
,
35
(
4
), pp.
638
649
.10.1016/j.precisioneng.2011.04.006
5.
Hopkins
,
J. B.
,
Vericella
,
J. J.
, and
Harvey
,
C. A.
,
2014
, “
Modeling and Generating Parallel Flexure Elements
,”
Precis. Eng.
,
38
(
3
), pp.
525
537
.10.1016/j.precisioneng.2014.02.001
6.
Gibson
,
C. G.
, and
Hunt
,
K. H.
,
1990
, “
Geometry of Screw Systems—I, Classification of Screw Systems
,”
Mech. Mach. Theory
,
25
(
1
), pp.
1
10
.10.1016/0094-114X(90)90103-Q
7.
Gibson
,
C. G.
, and
Hunt
,
K. H.
,
1990
, “
Geometry of Screw Systems—II, Classification of Screw Systems
,”
Mech. Mach. Theory
,
25
(
1
), pp.
11
27
.10.1016/0094-114X(90)90104-R
8.
Rico
,
J. M.
, and
Duffy
,
J.
,
1992
, “
Classification of Screw Systems—I: One- and Two-Systems
,”
Mech. Mach. Theory
,
27
(
4
), pp.
459
470
.10.1016/0094-114X(92)90037-I
9.
Rico
,
J. M.
, and
Duffy
,
J.
,
1992
, “
Classification of Screw Systems—II: Three-Systems
,”
Mech. Mach. Theory
,”
27
(
4
), pp.
471
490
.10.1016/0094-114X(92)90038-J
10.
Rico
,
J. M.
, and
Duffy
,
J.
,
1992
, “
Orthogonal Spaces and Screw Systems
,”
Mech. Mach. Theory
,
27
(
4
), pp.
451
458
.10.1016/0094-114X(92)90036-H
11.
Hopkins
,
J. B.
,
Lange
,
K. J.
, and
Spadaccini
,
C. M.
,
2013
, “
Designing Microstructural Architectures With Thermally Actuated Properties Using Freedom, Actuation, and Constraint Topologies
,”
ASME J. Mech. Des.
,
135
(
6
), p.
061004
.10.1115/1.4024122
12.
Jefferson
,
G.
,
Parthasarathy
,
T. A.
, and
Kerans
,
R. J.
,
2009
, “
Tailorable Thermal Expansion Hybrid Structures
,”
Int. J. Solids Struct.
,
46
(
11–12
), pp.
2372
2387
.10.1016/j.ijsolstr.2009.01.023
13.
Lakes
,
R. S.
,
1996
, “
Cellular Solid Structures With Unbounded Thermal Expansion
,”
J. Mater. Sci. Lett.
,
15
(
6
), pp.
475
477
.10.1007/BF00275406
14.
Spadaccini
,
C. M.
,
Farquar
,
G.
,
Weisgraber
,
T.
,
Gemberling
,
S.
,
Fang
,
N.
,
Xu
,
J.
, and
Alonso
,
M.
,
2009
, “
High Resolution Projection Microstereolithography for 3-D Fabrication
,” National Nanomanufacturing Summit, Boston, MA, May 27–29.
15.
Sun
,
C.
,
Fang
,
N.
,
Wu
,
D. M.
, and
Zhang
,
X.
,
2005
, “
Projection Micro-Stereolithography Using Digital Micro-Mirror Dynamic Mask
,”
Sens. Actuators: A.
,
121
(
1
), pp.
113
120
.10.1016/j.sna.2004.12.011
16.
Ahn
,
B. Y.
,
Duoss
,
E. B.
,
Motala
,
M. J.
,
Guo
,
X.
,
Park
,
S.-II.
,
Xiong
,
Y.
,
Yoon
,
J.
,
Nuzzo
,
R. G.
,
Rogers
,
J. A.
, and
Lewis
,
J. A.
,
2009
, “
Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes
,”
Science
,
323
(
5921
), pp.
1590
1593
.10.1126/science.1168375
17.
Telleria
,
M. J.
, and
Culpepper
,
M. L.
,
2012
, “
Understanding the Drivers for the Development of Design Rules for the Synthesis of Cylindrical Flexures
,”
Mech. Sci.
,
3
(1), pp.
25
32
.10.5194/ms-3-25-2012
18.
Ball
,
R. S.
,
1900
,
A Treatise on the Theory of Screws
,
Cambridge University
,
Cambridge, UK
.
19.
Phillips
,
J.
,
1984
,
Freedom in Machinery: Volume 1, Introducing Screw Theory
,
Cambridge University Press
,
New York
.
20.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
21.
Bothema
,
R.
, and
Roth
,
B.
,
1990
,
Theoretical Kinematics
,
Dover
, New York.
22.
Maxwell
,
J. C.
,
1890
, “
General Considerations Concerning Scientific Apparatus
,”
The Scientific Papers of James Clerk Maxwell
,
W. D.
Niven
, ed.,
Dover
, New York.
23.
Hopkins
,
J. B.
,
2007
, “
Design of Parallel Flexure Systems Via Freedom and Constraint Topologies (FACT)
,” Master’s thesis, Massachusetts Institute of Technology, Cambridge, MA.
24.
Hopkins
,
J. B.
,
2010
, “
Design of Flexure-Based Motion Stages for Mechatronic Systems Via Freedom, Actuation, and Constraint Topologies (FACT)
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
25.
Su
,
H.
,
Dorozhkin
,
D. V.
, and
Vance
,
J. M.
,
2009
, “
A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041009
.10.1115/1.3211024
26.
Su
,
H.
,
2011
, “
Mobility Analysis of Flexure Mechanisms Via Screw Algebra
,”
ASME J. Mech. Rob.
,
3
(
4
), p.
041010
.10.1115/1.4004910
27.
Aarts
,
R. G. K. M.
,
Meijaard
,
J. P.
, and
Jonker
,
J. B.
,
2012
, “
Flexible Multibody Modelling for Exact Constraint Design of Compliant Mechanisms
,”
Multibody Syst. Dyn.
,
27
(
1
), pp.
119
133
.10.1007/s11044-011-9272-9
28.
DiBiasio
,
C. M.
, and
Culpepper
,
M. L.
,
2010
, “
Design and Characterization of a Six Degree of Freedom Meso-Scale Nanopositioner With Integrated Strain Sensing
,”
25th Annual Meeting of the American Society for Precision Engineering
,
Atlanta, GA
, Oct. 31–Nov. 4.
29.
Jun
,
M.
, and
Clark
,
J. V.
,
2009
, “
A Study of Curved Flexure for MEMS
,”
5th Annual North American COMSOL Conference
,
Boston, MA
, Oct. 8–10.
30.
Folkersma
,
K. G. P.
,
Boer
,
S. E.
,
Brouwer
,
D. M.
,
Herder
,
J. L.
, and
Soemers
,
H. M. J. R.
,
2012
, “
A 2-DOF Large Stroke Flexure-Based Positioning Mechanism
,”
ASME
Paper No. DETC2012-70377.10.1115/DETC2012-70377
You do not currently have access to this content.