This work is an incremental extension of adjustable planar four-bar kinematic synthesis theory to consider not only synthesis, but also the elimination of the defects inherent in synthesis. A nonlinear equation system for moving pivot-adjustable planar four-bar motion generation that includes constraints for order defect, branch defect and circuit defect elimination is presented in this work. In the objective function of the equation system, the error between the prescribed and achieved precision positions is minimized. The equation system includes inequality constraints to eliminate order defects and branch defects. The equation system also includes a complete planar four-bar displacement model to eliminate circuit defects.

References

1.
Mallik
,
A. K.
,
Ghosh
,
A.
, and
Dittrich
,
D.
,
1994
,
Kinematic Analysis and Synthesis of Mechanisms
,
CRC Press
,
Boca Raton
, FL.
2.
Norton
,
R. L.
,
2008
,
Design of Machinery
, 4th ed.,
McGraw-Hill
,
New York
.
3.
Gupta
,
K. C.
, and
Beloiu
,
A. S.
,
1998
, “
Branch and Circuit Elimination in Spherical Four-Bar Linkages
,”
Mech. Mach. Theory
,
33
(
5
), pp.
491
504
.10.1016/S0094-114X(97)00078-5
4.
Beloiu
,
A. S.
, and
Gupta
,
K. C.
,
1997
, “
A Unified Approach for the Investigation of Branch and Circuit Defects
,”
Mech. Mach. Theory
,
32
(
5
), pp.
539
557
.10.1016/S0094-114X(96)00070-5
5.
Balli
,
S. S.
, and
Chand
,
S.
,
2002
, “
Defects in Link Mechanisms and Solution Rectification
,”
Mech. Mach. Theory
,
37
(
9
), pp.
851
876
.10.1016/S0094-114X(02)00035-6
6.
Gogate
,
G. R.
, and
Matekar
,
S. B.
,
2012
, “
Optimum Synthesis of Motion Generating Four-Bar Mechanism Using Alternate Error Functions
,”
Mech. Mach. Theory
,
54
, pp.
41
61
.10.1016/j.mechmachtheory.2012.03.007
7.
Bajpal
,
A.
, and
Kramer
,
S.
,
1985
, “
Detection and Elimination of Mechanism Defects in the Selective Precision Synthesis of Planar Mechanisms
,”
Mech. Mach. Theory
,
20
(
6
), pp.
521
534
.10.1016/0094-114X(85)90070-9
8.
McCarthy
,
J. M.
, and
Bodduluri
,
R. M.
,
2000
, “
Avoiding Singular Configurations in Finite Position Synthesis of Spherical 4R Linkages
,”
Mech. Mach. Theory
,
35
(
3
), pp.
451
462
.10.1016/S0094-114X(99)00005-1
9.
Han
,
J.
, and
Qian
,
W.
,
2009
, “
On the Solution of Region-Based Planar Four-Bar Motion Generation
,”
Mech. Mach. Theory
,
44
(
2
), pp.
457
465
.10.1016/j.mechmachtheory.2008.03.005
10.
Myszka
,
D. H.
,
Murray
,
A. P.
, and
Wampler
,
C. W.
,
2013
, “
Computing the Branches, Singularity Trace and Critical Points of Single Degree-of-Freedom, Closed-Loop Linkages
,”
ASME J. Mech. Rob.
,
6
(
1
), p.
011006
.10.1115/1.4025752
11.
Ting
,
K.
,
Wang
,
J.
,
Xue
,
C.
, and
Currie
,
K. R.
,
2010
, “
Full Rotatability and Singularity of Six-Bar and Geared Five-Bar Linkages
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011011
.10.1115/1.4000517
12.
Hwang
,
W.
, and
Chen
,
Y.
,
2010
, “
Defect-Free Synthesis of Stephenson II Function Generators
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041012
.10.1115/1.4001728
13.
Krishnamurty
,
S.
, and
Turcic
,
D. A.
,
1988
, “
A General Method of Determining and Eliminating Branching in Planar Multiloop Mechanisms
,”
ASME J. Mech. Des.
,
110
(
4
), pp.
414
422
.10.1115/1.3258938
14.
Martin
,
P. J.
,
Russell
,
K.
, and
Sodhi
,
R. S.
,
2007
, “
On Mechanism Design Optimization for Motion Generation
,”
Mech. Mach. Theory
,
42
(
10
), pp.
1251
1263
.10.1016/j.mechmachtheory.2006.11.009
15.
Shen
,
Q.
,
Al-Smadi
,
Y. M.
,
Martin
,
P. J.
,
Russell
,
K.
, and
Sodhi
,
R. S.
,
2009
, “
An Extension of Mechanism Design Optimization for Motion Generation
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1759
1767
.10.1016/j.mechmachtheory.2009.03.001
16.
Al-Smadi
,
Y. M.
,
Russell
,
K.
, and
Sodhi
,
R. S.
,
2009
, “
Planar Four-Bar Motion Generation With Static Structural Conditions
,”
ASME J. Mech. Rob.
,
1
(
3
), p.
031009
.10.1115/1.3147191
17.
Al-Smadi
,
Y. M.
,
Russell
,
K.
, and
Sodhi
,
R. S.
,
2008
, “
Planar Four-Bar Path Generation With Static Structural Conditions
,”
J. Adv. Mech. Des. Syst. Manuf.
,
2
(
5
), pp.
926
936
.10.1299/jamdsm.2.926
18.
Al-Smadi
,
Y. M.
,
Russell
,
K.
, and
Sodhi
,
R. S.
,
2009
, “
Four-Bar Motion Generation With Elasticity Constraints and Optimization
,”
J. Multi-Body Dyn.
,
223
(
3
), pp.
245
253
.10.1243/14644193JMBD173
19.
Al-Smadi
,
Y. M.
,
Shen
,
Q.
,
Russell
,
K.
, and
Sodhi
,
R. S.
,
2009
, “
Planar Four-Bar Motion Generation With Prescribed Static Torque and Rigid-Body Reaction Force
,”
Mech. Based Des. Struct. Mach.
,
37
(
1
), pp.
73
85
.10.1080/15397730802713389
20.
Al-Smadi
,
Y. M.
,
Russell
,
K.
, and
Sodhi
,
R. S.
,
2009
, “
On Traveler Braking Mechanism Design With Elastic Deflection and Buckling Considerations
,”
Mech. Based Des. Struct. Mach.
,
37
(
3
), pp.
401
412
.10.1080/15397730902970483
21.
Wang
,
S. J.
, and
Sodhi
,
R. S.
,
1996
, “
Kinematic Synthesis of Adjustable Moving Pivot Four-Bar Mechanisms for Multi-Phase Motion Generation
,”
Mech. Mach. Theory
,
31
(
4
), pp.
459
474
.10.1016/0094-114X(95)00085-D
22.
Zhou
,
H.
, and
Cheung
,
E. H. M.
,
2004
, “
Adjustable Four-Bar Linkages for Multi-Phase Motion Generation
,”
Mech. Mach. Theory
,
39
(
3
), pp.
261
279
.10.1016/j.mechmachtheory.2003.07.001
23.
Sodhi
,
R. S.
, and
Russell
,
K.
,
2004
, “
Kinematic Synthesis of Adjustable Planar Four-Bar Mechanisms for Multi-Phase Motion Generation With Tolerances
,”
Mech. Based Des. Struct. Mach.
,
32
(
2
), pp.
215
233
.10.1081/SME-120030559
24.
Russell
,
K.
, and
Sodhi
,
R. S.
,
2005
, “
On the Design of Slider-Crank Mechanisms. Part I: Multi-Phase Motion Generation
,”
Mech. Mach. Theory
,
40
(
3
), pp.
285
299
.10.1016/j.mechmachtheory.2004.07.009
25.
Ahmad
,
A.
, and
Waldron
,
K. J.
,
1979
, “
Synthesis of Adjustable Planar 4-Bar Mechanisms
,”
Mech. Mach. Theory
,
14
(
6
), pp.
405
411
.10.1016/0094-114X(79)90005-3
26.
Wilhelm
,
A. J.
,
1989
, “
Kinematic Synthesis of Adjustable Linkages for Motion Generation
,” Ph.D. dissertation, The Wichita State University, Wichita, KS.
27.
Suh
,
C. H.
, and
Radcliffe
,
C. W.
,
1978
,
Kinematics and Mechanism Design
,
Wiley
,
New York
.
28.
Nocedal
,
J.
, and
Wright
,
S. J.
,
2006
,
Numerical Optimization
,
Springer
,
New York
.
29.
Han
,
S. P.
,
1977
, “
A Globally Convergent Method for Nonlinear Programming
,”
J. Optim. Theory Appl.
,
22
(
3
), pp.
297
309
.10.1007/BF00932858
30.
Powell
,
M. J. D.
,
1978
, “
A Fast Algorithm for Nonlinearly Constrained Optimization Calculations
,”
Numerical Analysis (Lecture Notes in Mathematics
, Vol. 630),
G. A.
Watson
, ed.,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.