This work is an incremental extension of adjustable planar four-bar kinematic synthesis theory to consider not only synthesis, but also the elimination of the defects inherent in synthesis. A nonlinear equation system for moving pivot-adjustable planar four-bar motion generation that includes constraints for order defect, branch defect and circuit defect elimination is presented in this work. In the objective function of the equation system, the error between the prescribed and achieved precision positions is minimized. The equation system includes inequality constraints to eliminate order defects and branch defects. The equation system also includes a complete planar four-bar displacement model to eliminate circuit defects.
Issue Section:
Technical Brief
References
1.
Mallik
, A. K.
, Ghosh
, A.
, and Dittrich
, D.
, 1994
, Kinematic Analysis and Synthesis of Mechanisms
, CRC Press
, Boca Raton
, FL.2.
Norton
, R. L.
, 2008
, Design of Machinery
, 4th ed., McGraw-Hill
, New York
.3.
Gupta
, K. C.
, and Beloiu
, A. S.
, 1998
, “Branch and Circuit Elimination in Spherical Four-Bar Linkages
,” Mech. Mach. Theory
, 33
(5
), pp. 491
–504
.10.1016/S0094-114X(97)00078-54.
Beloiu
, A. S.
, and Gupta
, K. C.
, 1997
, “A Unified Approach for the Investigation of Branch and Circuit Defects
,” Mech. Mach. Theory
, 32
(5
), pp. 539
–557
.10.1016/S0094-114X(96)00070-55.
Balli
, S. S.
, and Chand
, S.
, 2002
, “Defects in Link Mechanisms and Solution Rectification
,” Mech. Mach. Theory
, 37
(9
), pp. 851
–876
.10.1016/S0094-114X(02)00035-66.
Gogate
, G. R.
, and Matekar
, S. B.
, 2012
, “Optimum Synthesis of Motion Generating Four-Bar Mechanism Using Alternate Error Functions
,” Mech. Mach. Theory
, 54
, pp. 41
–61
.10.1016/j.mechmachtheory.2012.03.0077.
Bajpal
, A.
, and Kramer
, S.
, 1985
, “Detection and Elimination of Mechanism Defects in the Selective Precision Synthesis of Planar Mechanisms
,” Mech. Mach. Theory
, 20
(6
), pp. 521
–534
.10.1016/0094-114X(85)90070-98.
McCarthy
, J. M.
, and Bodduluri
, R. M.
, 2000
, “Avoiding Singular Configurations in Finite Position Synthesis of Spherical 4R Linkages
,” Mech. Mach. Theory
, 35
(3
), pp. 451
–462
.10.1016/S0094-114X(99)00005-19.
Han
, J.
, and Qian
, W.
, 2009
, “On the Solution of Region-Based Planar Four-Bar Motion Generation
,” Mech. Mach. Theory
, 44
(2
), pp. 457
–465
.10.1016/j.mechmachtheory.2008.03.00510.
Myszka
, D. H.
, Murray
, A. P.
, and Wampler
, C. W.
, 2013
, “Computing the Branches, Singularity Trace and Critical Points of Single Degree-of-Freedom, Closed-Loop Linkages
,” ASME J. Mech. Rob.
, 6
(1
), p. 011006
.10.1115/1.402575211.
Ting
, K.
, Wang
, J.
, Xue
, C.
, and Currie
, K. R.
, 2010
, “Full Rotatability and Singularity of Six-Bar and Geared Five-Bar Linkages
,” ASME J. Mech. Rob.
, 2
(1
), p. 011011
.10.1115/1.400051712.
Hwang
, W.
, and Chen
, Y.
, 2010
, “Defect-Free Synthesis of Stephenson II Function Generators
,” ASME J. Mech. Rob.
, 2
(4
), p. 041012
.10.1115/1.400172813.
Krishnamurty
, S.
, and Turcic
, D. A.
, 1988
, “A General Method of Determining and Eliminating Branching in Planar Multiloop Mechanisms
,” ASME J. Mech. Des.
, 110
(4
), pp. 414
–422
.10.1115/1.325893814.
Martin
, P. J.
, Russell
, K.
, and Sodhi
, R. S.
, 2007
, “On Mechanism Design Optimization for Motion Generation
,” Mech. Mach. Theory
, 42
(10
), pp. 1251
–1263
.10.1016/j.mechmachtheory.2006.11.00915.
Shen
, Q.
, Al-Smadi
, Y. M.
, Martin
, P. J.
, Russell
, K.
, and Sodhi
, R. S.
, 2009
, “An Extension of Mechanism Design Optimization for Motion Generation
,” Mech. Mach. Theory
, 44
(9
), pp. 1759
–1767
.10.1016/j.mechmachtheory.2009.03.00116.
Al-Smadi
, Y. M.
, Russell
, K.
, and Sodhi
, R. S.
, 2009
, “Planar Four-Bar Motion Generation With Static Structural Conditions
,” ASME J. Mech. Rob.
, 1
(3
), p. 031009
.10.1115/1.314719117.
Al-Smadi
, Y. M.
, Russell
, K.
, and Sodhi
, R. S.
, 2008
, “Planar Four-Bar Path Generation With Static Structural Conditions
,” J. Adv. Mech. Des. Syst. Manuf.
, 2
(5
), pp. 926
–936
.10.1299/jamdsm.2.92618.
Al-Smadi
, Y. M.
, Russell
, K.
, and Sodhi
, R. S.
, 2009
, “Four-Bar Motion Generation With Elasticity Constraints and Optimization
,” J. Multi-Body Dyn.
, 223
(3
), pp. 245
–253
.10.1243/14644193JMBD17319.
Al-Smadi
, Y. M.
, Shen
, Q.
, Russell
, K.
, and Sodhi
, R. S.
, 2009
, “Planar Four-Bar Motion Generation With Prescribed Static Torque and Rigid-Body Reaction Force
,” Mech. Based Des. Struct. Mach.
, 37
(1
), pp. 73
–85
.10.1080/1539773080271338920.
Al-Smadi
, Y. M.
, Russell
, K.
, and Sodhi
, R. S.
, 2009
, “On Traveler Braking Mechanism Design With Elastic Deflection and Buckling Considerations
,” Mech. Based Des. Struct. Mach.
, 37
(3
), pp. 401
–412
.10.1080/1539773090297048321.
Wang
, S. J.
, and Sodhi
, R. S.
, 1996
, “Kinematic Synthesis of Adjustable Moving Pivot Four-Bar Mechanisms for Multi-Phase Motion Generation
,” Mech. Mach. Theory
, 31
(4
), pp. 459
–474
.10.1016/0094-114X(95)00085-D22.
Zhou
, H.
, and Cheung
, E. H. M.
, 2004
, “Adjustable Four-Bar Linkages for Multi-Phase Motion Generation
,” Mech. Mach. Theory
, 39
(3
), pp. 261
–279
.10.1016/j.mechmachtheory.2003.07.00123.
Sodhi
, R. S.
, and Russell
, K.
, 2004
, “Kinematic Synthesis of Adjustable Planar Four-Bar Mechanisms for Multi-Phase Motion Generation With Tolerances
,” Mech. Based Des. Struct. Mach.
, 32
(2
), pp. 215
–233
.10.1081/SME-12003055924.
Russell
, K.
, and Sodhi
, R. S.
, 2005
, “On the Design of Slider-Crank Mechanisms. Part I: Multi-Phase Motion Generation
,” Mech. Mach. Theory
, 40
(3
), pp. 285
–299
.10.1016/j.mechmachtheory.2004.07.00925.
Ahmad
, A.
, and Waldron
, K. J.
, 1979
, “Synthesis of Adjustable Planar 4-Bar Mechanisms
,” Mech. Mach. Theory
, 14
(6
), pp. 405
–411
.10.1016/0094-114X(79)90005-326.
Wilhelm
, A. J.
, 1989
, “Kinematic Synthesis of Adjustable Linkages for Motion Generation
,” Ph.D. dissertation, The Wichita State University, Wichita, KS.27.
Suh
, C. H.
, and Radcliffe
, C. W.
, 1978
, Kinematics and Mechanism Design
, Wiley
, New York
.28.
Nocedal
, J.
, and Wright
, S. J.
, 2006
, Numerical Optimization
, Springer
, New York
.29.
Han
, S. P.
, 1977
, “A Globally Convergent Method for Nonlinear Programming
,” J. Optim. Theory Appl.
, 22
(3
), pp. 297
–309
.10.1007/BF0093285830.
Powell
, M. J. D.
, 1978
, “A Fast Algorithm for Nonlinearly Constrained Optimization Calculations
,” Numerical Analysis (Lecture Notes in Mathematics
, Vol. 630), G. A.
Watson
, ed., Springer-Verlag
, Berlin
.Copyright © 2015 by ASME
You do not currently have access to this content.