This study proposes an innovative transmission mechanism, called parallel-type independently controllable transmission (ICT). The proposed mechanism can provide functions similar to those of infinitely variable transmission (IVT) or continuously variable transmission (CVT) mechanisms. The parallel-type ICT can transmit rotational output speed that can be independently regulated using a controller and is unaffected by the speed variation of the input shaft. Thus, a variable speed wind turbine can generate electricity with a constant frequency and improved quality. The kinematic characteristics, torque distribution, and power flow of this transmission mechanism were verified using a prototype of the ICT to demonstrate the feasibility of its application.

References

1.
Murrell
,
P. W.
,
Calverley
,
J.
,
Williams
,
D.
, and
Thomas
,
D. J.
,
1988
, “
Apparatus for Providing an Electrical Generator With a Constant Rotation Speed From a Variable Speed Input
,”
U.S. Patent No. US4774855
.
2.
Pennestri
,
E.
, and
Freudenstein
,
F.
,
1993
, “
A Systematic Approach to Power-Flow and Static-Force Analysis in Epicyclic Spur-Gear Trains
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
639
644
.
3.
Mucino
, V
. H.
,
Lu
,
Z.
,
Smith
,
J. E.
,
Kimcikiewicz
,
M.
, and
Cowan
,
B.
,
2001
, “
Design of Continuously Variable Power Split Transmission Systems for Automotive Applications
,”
Proc. Inst. Mech. Eng., Part D
,
215
(
4
), pp.
469
478
.
4.
Parrish
,
B. E.
,
2002
, “
Continuously Variable Transmission
,” U.S. Patent No. US6387004 B1.
5.
Benitez
,
F. G.
,
Madrigal
,
J. M.
, and
del Castillo
,
J. M.
,
2004
, “
Infinitely Variable Transmission of Ratcheting Drive Type Based on One-Way Clutches
,”
ASME J. Mech. Des.
,
126
(
7
), pp.
673
682
.
6.
Kahraman
,
A.
,
Ligata
,
H.
,
Kienzle
,
K.
, and
Zini
,
D. M.
,
2004
, “
A Kinematics and Power Flow Analysis Methodology for Automatic Transmission Planetary Gear Trains
,”
ASME J. Mech. Des.
,
126
(
11
), pp.
1071
1081
.
7.
Takahito
,
T.
,
2004
, “
Wind Power Generation Device
,” Japan Patent No. JP2004-162652A.
8.
Salgado
,
D. R.
, and
del Castillo
,
J. M.
,
2007
, “
Conditions for Self-Locking in Planetary Gear Trains
,”
ASME J. Mech. Des.
,
129
(
9
), pp.
960
968
.
9.
Bottiglione
,
F.
, and
Mantriota
,
G.
,
2008
, “
MG-IVT: An Infinitely Variable Transmission With Optimal Power Flows
,”
ASME J. Mech. Des.
,
130
(
11
), p.
112603
.
10.
Lahr
,
D.
, and
Hong
,
D.
,
2009
, “
Operation and Kinematic Analysis of a Cam-Based Infinitely Variable Transmission
,”
ASME J. Mech. Des.
,
131
(
8
), p.
081009
.
11.
Esmail
,
E. L.
, and
Hassan
,
S. S.
,
2010
, “
An Approach to Power-Flow and Static Force Analysis in Multi-Input Multi-Output Epicyclic-Type Transmission Trains
,”
ASME J. Mech. Des.
,
132
(
1
), p.
011009
.
12.
Hassan
,
S. S.
,
2010
, “
Enumeration of Feasible Clutching Sequences of Epicyclic Gear Mechanisms
,”
ASME J. Mech. Des.
,
132
(
7
), p.
071002
.
13.
Chen
,
C.
,
2011
, “
Power Flow Analysis of Compound Epicycle Gear Transmission: Simpson Gear Train
,”
ASME J. Mech. Des.
,
133
(
9
), p.
094502
.
14.
Hwang
,
G. S.
,
Tsay
,
D. M.
,
Kuang
,
J. H.
, and
Chern
,
T. L.
,
2010
, “
Kinematical Analysis of a Novel Transmission Mechanism With Steady-Speed Output for Variable Speed Wind Turbines
,”
ASME
Paper No. GT2010-23207.
15.
Hwang
,
G. S.
, and
Tsay
,
D. M.
,
2013
, “
Independently Controllable Transmission Mechanisms
,”
U.S. Patent No. US8585530 B2
.
16.
Müller
,
H. W.
,
1982
,
Epicyclic Drive Trains: Analysis, Synthesis, and Applications
,
Wayne State University Press
,
Detroit, MI
.
You do not currently have access to this content.