Meso∕micro grasping of tiny soft objects such as biological tissues, which ranges from hundreds to thousands of micro-millimeters in dimension, plays a significant role in the fields of tele-surgery, minimally invasive surgery (MIS), and biomedical instrumentation. Recently, the authors proposed a novel piezoelectric forceps actuator (PFA), which is capable of grasping delicate soft objects. One of the advantages of the PFA over conventional MIS forceps lies in that it can be remotely controlled to achieve precision deflection and grasping force. Furthermore, it does not have any moving parts such as gears and hinges, and hence avoids problems in operation like friction, backlash, lubrication, leakage, and sterilization. In this paper, a mathematical model of the PFA is derived, based on which genetic algorithm (GA) is applied to optimize the grasping force-deflection relationship of the actuator. The model developed is experimentally verified on a prototype of the PFA.

1.
Clark
,
W. W.
, and
Wang
,
J.
, 2000, “
Development of a Piezoelectrically Actuated Cell Stretching Device
,”
Proc. SPIE
0277-786X
3991
, pp.
294
301
.
2.
Tanaka
,
S.
, 1999, “
A New Mechanical Stimulator for Cultured Bone Cells Using Piezolectric Actuator
,”
J. Biomech.
0021-9290
32
, pp.
427
430
.
3.
Schaffer
,
J. L.
,
Rizen
,
M.
,
L’Italien
,
G. J.
,
Benbrahim
,
A.
,
Megerman
,
J.
,
Gerstenfeld
,
L. C.
, and
Gray
,
M. L.
, 1994, “
Device for the Application of a Dynamic Biaxially Uniform and Isotropic Strain to a Flexible Cell Culture Membrane
,”
J. Orthop. Res.
0736-0266
12
, pp.
709
719
.
4.
Susanto
,
K.
, 2002, “
Tumor, Biopsy or Feces Removal Piezoelectric Device With Fiber Optic Camera Controlled by Remote Dataglove
,”
The 4th IEEE Annual BME Bio-Tech Application Contest
, Long Beach.
5.
Washington
,
G.
, 1996, “
Smart Aperture Antennas
,”
Smart Mater. Struct.
0964-1726
5
(6), pp.
801
805
.
6.
Granger
,
R.
,
Washington
,
G.
, and
Kwak
,
S-K.
, 2000, “
Modeling and Control of a Singly Curved Active Aperture Antenna Using Curved Piezoceramic Actuators
,”
J. Intell. Mater. Syst. Struct.
1045-389X
11
, pp.
225
233
.
7.
Thirupathi
,
S. R.
, and
Naganathan
,
N. G.
, 1992, “
Use of Piezoceramic Actuation for Automotive Active Suspension Mechanisms: A Feasibility Study
,”
Robotics, Spatial Mechanisms, and Mechanical Systems
,
ASME
,
New York
, pp.
233
241
.
8.
Sumali
,
H.
, and
Cudney
,
H.
, 1994, “
An Active Engine Mount with a Piezoelectric Stacked Actuator
,”
Proceedings of the 35th SDM Conference
, pp.
1233
1241
,
AIAA
,
New York
.
9.
Crawley
,
E. F.
, and
de Luis
,
J.
, 1987, “
Use of Piezoelectric Actuators as Elements of Intelligent Structures
,”
AIAA J.
0001-1452
25
, pp.
1676
1385
.
10.
Samak
,
D. K.
, and
Chopra
,
I.
, 1994, “
Design of High Force, High Displacement Actuators for Helicopter Rotors
,”
Proceedings of the 1994 North American Conference on Smart Materials and Structures
, pp.
86
97
.
11.
Damjanovic
,
D.
, and
Newnham
,
R. E.
, 1992, “
Electrostrictive and Piezoelectric Materials for Actuators Applications
,”
J. Intell. Mater. Syst. Struct.
1045-389X
3
(2), pp.
190
208
.
12.
Titus
,
J.
, 2003, “
High-Tech Forceps Grab Award
,”
Des. News
0011-9407, pp.
105
106
.
13.
Shakeri
,
C.
,
Bordonaro
,
C. M.
,
Noori
,
M. N.
, and
Champagne
,
R.
, 1999, “
Experimental Study of THUNDER: A New Generation of Piezoelectric Actuators
,”
Proceedings of SPIE Conference on Smart Materials Technologies
, Vol.
3675
, pp.
63
71
.
14.
Mossi
,
K. M.
,
Bishop
,
R. P.
,
Smith
,
R. C.
, and
Banks
,
H. T.
, 1999, “
Evaluation Criteria for THUNDER Actuators
,”
Proceedings of SPIE Conference on Mathematics and Control in Smart Structures
, Vol.
3667
, pp.
738
743
.
15.
Ounaies
,
Z.
,
Mossi
,
K.
,
Smith
,
R.
, and
Bernd
,
J.
, 2001, “
Low-Field and High-Field Characterization of THUNDER Actuators
,”
Proceedings of SPIE Conference on Smart Structures and Materials
, Vol.
4333
, pp.
399
407
.
16.
Balakrishnan
,
S.
, and
Niezrecki
,
C.
, 2001, “
Power Characterization of THUNDER Actuators as Underwater Propulsors
,”
Proceedings of SPIE Conference on Smart Structures and Materials
, Vol.
4327
, pp.
88
98
.
17.
Susanto
,
K.
, and
Yang
,
B.
, 2004, “
Data Glove-Based Fuzzy Control of Piezoelectric Forceps Actuator
,”
Proceedings of SPIE Conference on Smart Structures and Materials
;
Alison B.
Flatau
, ed., Vol.
5390
, pp.
388
39
.
18.
Henein
,
S.
,
Thurner
,
M.
, and
Steinecker
,
A.
, 2003, “
Flexible Micro-Gripper for Micro-Factory Robots
,” US Patent EP∕02-26147.5.
19.
Ku
,
S.
, and
Salcudean
,
S. E.
, 1995, “
Dexterity Enhancement in Microsurgery Using a Motion-Scaling System and Microgripper
,” IEEE ICRA’95.
20.
Miyata
,
N.
,
Kobayashi
,
E.
,
Kim
,
D.
,
Masamune
,
K.
,
Sakuma
,
I.
,
Yahagi
,
N.
,
Tsuji
,
T.
,
Inada
,
H.
,
Dohi
,
T.
,
Iseki
,
H.
, and
Takaura
,
K.
, 2002, “
Micro-Grasping Forceps Manipulator for MR-Guided Neurosurgery
,” MICCAI 2002.
21.
K. Ikuta
,
K.
,
Daifu
,
S.
,
Hasegawa
,
T.
, and
Higashikawa
,
H.
, 2002, “
Hyper-Finger of Remote Minimally Invasive Surgery in Deep Area
,” MICCAI 2002.
22.
Kobayashi
,
Y.
,
Chiyoda
,
S.
,
Watabe
,
K.
,
Okada
,
M.
, and
Nakamura
,
Y.
, 2002, “
Small Occupancy Robotic Mechanisms for Endoscopic Surgery
,” MICCAI 2002.
23.
Dario
,
P.
,
Hannaford
,
B.
, and
Menciassi
,
A.
, 2003, “
Smart Surgical Tools and Augmenting Devices
,”
IEEE Trans. Rob. Autom.
1042-296X
19
(5), pp.
782
792
.
24.
M. C. Carrozza
,
M. C.
,
Eisinberg
,
A.
,
Menciassi
,
A.
,
Campolo
,
D.
,
Micera
,
S.
, and
Dario
,
P.
, 2000, “
Towards a Force-Controlled Microgripper for Assembling Biomedical Microdevices
,”
J. Micromech. Microeng.
0960-1317
10
, pp.
271
276
.
25.
Edinger
,
B.
,
Frecker
,
M.
, and
Gardner
,
J.
, 2000, “
Dynamic Modeling of an Innovative Piezoelectric Actuator for Minimally Invasive Surgery
,”
J. Intell. Mater. Syst. Struct.
1045-389X
11
, pp.
765
770
.
26.
Frecker
,
M.
,
Powell
,
K.
, and
Haluck
,
R.
, 2005, “
Design of a Multifunctional Compliant Instrument for Minimally Invasive Surgery
,”
ASME J. Biomech. Eng.
0148-0731
127
, pp.
990
993
.
27.
Cappelleri
,
D.
,
Frecker
,
M.
,
Simpson
,
T.
, and
Synder
,
A.
, 2002, “
Design of a PZT Bimorph Actuator Using a Metamodel-Based Approach
,”
ASME J. Mech. Des.
1050-0472
124
(2), pp.
354
357
.
28.
Tanikawa
,
T.
, and
Arai
,
T.
, 1999, “
Development of a Micro-Manipulation System Having a Two-Fingered Micro-Hand
,”
IEEE Trans. Rob. Autom.
1042-296X
15
(1), pp.
152
162
.
29.
Qatu
,
M. S.
, 1993, “
Theories and Analysis of Thin and Moderately Thick Laminated Composite Curved Beams
,”
Int. J. Solids Struct.
0020-7683
30
(20), pp.
2743
2756
.
30.
Moskalik
,
A. J.
, and
Brei
,
D.
, 1996, “
Force-Deflection Behavior of Individual Unimorph Piezoceramic C-Block Actuators
,”
Proceedings of the ASME Aerospace Division
, pp.
679
687
.
31.
Moskalik
,
A. J.
, and
Brei
,
D.
, 1997, “
Quasi-Static Beahavior of Individual C-Block Piezoelectric Actuators
,”
J. Intell. Mater. Syst. Struct.
1045-389X
8
(7), pp.
571
587
.
32.
Moskalik
,
A. J.
, and
Brei
,
D.
, 1999, “
Force-Deflection Behavior of Piezoelectric C-Block Actuator Arrays
,”
Smart Mater. Struct.
0964-1726
8
(5), pp.
531
543
.
33.
Yoon
,
H. S.
, and
Washington
,
G.
, 1998, “
Piezoceramic Actuated Aperture Antennae
,”
Smart Mater. Struct.
0964-1726
7
, pp.
537
542
.
34.
Budynas
,
R. G.
, 1999,
Advanced Strength and Applied Stress Analysis
,
McGraw-Hill
,
New York
.
35.
Rao
,
S.
, 1996,
Engineering Optimization Theory and Practice
,
Wiley
,
New York
.
36.
Holland
,
J. H.
, 1975,
Adaptation in Natural and Artificial System
,
The University of Michigan Press
,
Ann Arbor, MI.
37.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms in Search, Optimization, and Machine Learning
,
Addison Wesley
,
Reading, MA.
38.
Li
,
J.
, and
Weng
,
G. J.
, 2001, “
A Micromechanics-Based Hysteresis Model for Ferroelectric Ceramics
,”
J. Intell. Mater. Syst. Struct.
1045-389X
12
, pp.
79
91
.
39.
Chipperfield
,
A.
,
Fleming
,
P.
,
Polheim
,
H.
, and
Ponseca
,
C.
, “
Genetic Algorithm Toolbox User’s Guide
.”
40.
Matlab Student Version 5.3
,” Mathworks, Inc.
41.
Baker
,
E.
, 1987, “
Reducing Bias and Inefficiency in the Selection Algorithm
,”
Proc. ICGA 2
, pp.
14
21
, Lawrence Erlbaum Associates.
42.
Muhlenbein
,
H.
, and
Schlierkamp-Voosen
,
D.
, 1993, “
Predictive Models for the Breeder Genetic Algorithm: Continuous Parameter Optimization
,”
Evol. Comput.
1063-6560
1
, pp.
25
49
.
You do not currently have access to this content.