Dental caries, the breakdown of tooth enamel by bacteria infection that causes cavities in the enamel, is the most common chronic disease in individuals 6–19 years of age in the U.S. Optical detection of caries has been shown to be sensitive to the presence of bacteria and the resulting demineralization of enamel. The scanning fiber endoscope (SFE) is a miniature camera system that can detect early stages of caries by performing high-quality imaging and laser fluorescence spectroscopy with 405 nm excitation. Because optical imaging of caries does not involve radiation risk, repeated imaging of the teeth is acceptable during treatment of the bacterial infection to monitor healing. A disposable handpiece was designed and fabricated to position the flexible fiber optic SFE probe for quantitative measurements. Plastic 3D-printed handpiece prototypes were tested with the SFE and a fluorescence calibration standard to verify mechanical fit and absence of signal contamination. Design feedback was provided by pediatric dentists and staff engineers to guide iterations. The final design configuration was based on the need to image interproximal regions (contact surfaces between adjacent teeth), ergonomics, and probe safety. The final handpiece design: (1) is safe for both the patient and the probe, (2) allows easy SFE insertion and removal, (3) does not interfere with spectral measurements, (4) standardizes the SFE's positioning during imaging by maintaining a consistent distance from the target surface, and (5) is significantly less expensive to produce and use than purchasing sanitary endoscope sheaths. The device will be used to help determine if new medicinal therapies can arrest caries and repair early interproximal demineralization under the clinical monitoring program. Ultimately, we anticipate that this handpiece will help us move closer toward widespread implementation of a dental diagnostic laser system that is safer and more sensitive than conventional methods for early caries detection.

References

1.
CDC,
2014
, “Hygiene-Related Diseases: Dental Caries (Tooth Decay),”
Centers for Disease Control and Prevention
,
Atlanta, GA
.
2.
National Institute of Dental and Craniofacial Research,
2013
, “
The Tooth Decay Process: How to Reverse It and Avoid a Cavity
,”
National Institutes of Health
(
NIH
), Bethesda, MD.
3.
Fried
,
D.
,
2010
, “
Lasers and Optics for Measuring Tooth Decay
,”
Optics Photonics News
,
April
, pp.
14
19
.
4.
Usenik
,
P.
,
Burmen
,
M.
,
Fidler
,
A.
,
Pernus
,
F.
, and
Likar
,
B.
,
2014
, “
Near-Infrared Hyperspectral Imaging of Water Evaporation Dynamics for Early Detection of Incipient Caries
,”
J. Dent.
,
42
(
10
), pp.
1242
1247
.
5.
Holtzman
,
J. S.
,
Ballantine
,
J.
,
Fontana
,
M.
,
Wang
,
A.
,
Calantog
,
A.
,
Benavides
,
E.
,
Gonzalez-Cabezas
,
C.
,
Chen
,
Z.
, and
Wilder-Smith
,
P.
,
2014
, “
Assessment of Early Occlusal Caries Pre- and Post-Sealant Application—An Imaging Approach
,”
Lasers Surg. Med.
,
46
(
6
), pp.
499
507
.
6.
Krzyżostaniak
,
J.
,
Kulczyk
,
T.
,
Czarnecka
,
B.
, and
Surdaka
,
A.
,
2014
, “
A Comparative Study of the Diagnostic Accuracy of Cone Beam Computed Tomography and Intraoral Radiographic Modalities for the Detection of Noncavitated Caries
,”
Clin. Oral Invest.
,
19
(
3
), pp.
667
672
.
7.
Timoshchuk
,
M. I.
,
Ridge
,
J. S.
,
Rugg
,
A. L.
,
Nelson
,
L. Y.
,
Kim
,
A. S.
, and
Seibel
,
E. J.
,
2015
, “
Real-Time Porphyrin Detection in Plaque and Caries: A Case Study
,”
Proc. SPIE
,
9306
, p.
93060C
.
8.
Zhang
,
L.
,
Kim
,
A. S.
,
Ridge
,
J. S.
,
Nelson
,
L. Y.
,
Berg
,
J. H.
, and
Seibel
,
J. H.
,
2013
, “
Trimodal Detection of Early Childhood Caries Using Laser Light Scanning and Fluorescence Spectroscopy: Clinical Prototype
,”
J. Biomed. Opt.
,
18
(
11
), p.
111412
.
9.
Dykstra
,
B.
,
2008
, “
Interproximal Caries Detection: How Good Are We?
Dent. Today
,
27
(
4
), pp.
144
147
.
10.
Bader
,
J. D.
, and
Shugars
,
D. A.
,
2004
, “
A Systematic Review of the Performance of a Laser Fluorescence Device for Detecting Caries
,”
J. Am. Dent. Assoc.
,
135
(
10
), pp.
1413
1426
.
11.
Reichmann
,
P.
,
Charland
,
D.
,
Rechmann
,
B. M. T.
, and
Featherstone
,
J. D. B.
,
2012
, “
Performance of Laser Fluorescence Devices and Visual Examination for the Detection of Occlusal Caries in Permanent Molars
,”
J. Biomed. Opt.
,
17
(
3
), p.
036006
.
12.
Lee
,
C. M.
,
Engelbrecht
,
C. J.
,
Soper
,
T. D.
,
Helmchen
,
F.
, and
Seibel
,
E. J.
,
2010
, “
Scanning Fiber Endoscopy With Highly Flexible, 1 mm Catheterscopes for Wide-Field, Full-Color Imaging
,”
J. Biophotonics
,
3
(
5–6
), pp.
385
407
.
13.
Jung
,
W.
,
Kim
,
J.
,
Jeon
,
M.
,
Chaney
,
E. J.
,
Stewart
,
C. N.
, and
Boppart
,
S. A.
,
2011
, “
Handheld Optical Coherence Tomography Scanner for Primary Care Diagnosis
,”
Trans. Biomed. Eng.
,
58
(
3
), pp.
741
744
.
14.
Lu
,
C. D.
,
Kraus
,
M. F.
,
Potsaid
,
B.
,
Liu
,
J. J.
,
Choi
,
W.
,
Jayaraman
,
V.
,
Cable
,
A. E.
,
Hornnegger
,
J.
,
Duker
,
J. S.
, and
Fujimoto
,
J. G.
,
2014
, “
Handheld Ultrahigh Speed Swept Source Optical Coherence Tomography Instrument Using a MEMS Scanning Mirror
,”
Biomed. Opt. Express
,
5
(
1
), pp.
293
311
.
15.
Demian
,
D.
,
Duma
,
V.-F.
,
Sinescu
,
C.
,
Negrutiu
,
M. L.
,
Cernat
,
R.
,
Topala
,
F. I.
,
Hutiu
,
G.
,
Bradu
,
A.
, and
Podoleanu
,
A. G.
,
2014
, “
Design and Testing of Prototype Handheld Scanning Probes for Optical Coherence Tomography
,”
Proc. IMechE Part H: J. Eng. Med.
,
228
(
8
), pp.
743
753
.
16.
Neches
,
R. Y.
,
Flynn
,
K. J.
,
Zaman
,
L.
,
Tung
,
E.
, and
Pudlo
,
N.
,
2014
, “
On the Intrinsic Sterility of 3D Printing
,”
PeerJ
,
2
, p.
e542v1
.
17.
Ventola
,
C. L.
,
2014
, “
Medical Applications for 3D Printing: Current and Projected Uses
,”
Pharm. Ther.
,
39
(
10
), pp.
704
711
.
18.
Lee
,
K.
,
Cho
,
J.
,
Chang
,
N.
,
Chae
,
J.
,
Kang
,
K.
,
Kim
,
S.
, and
Cho
,
J.
,
2015
, “
Accuracy of Three-Dimensional Printing for Manufacturing Replica Teeth
,”
Korean J. Orthod.
,
45
(
5
), pp.
217
225
.
19.
Tamimi
,
F.
,
Torres
,
J.
,
Al-Abedalla
,
K.
,
Lopez-Cabarcos
,
E.
,
Alkhraisat
,
M. H.
,
Bassett
,
D. C.
,
Gbureck
,
U.
, and
Barralet
,
J. E.
,
2014
, “
Osseointegration of Dental Implants in 3D-Printed Synthetic Onlay Grafts Customized According to Bone Metabolic Activity in Recipient Site
,”
Biomaterials
,
35
(
21
), pp.
5436
5445
.
20.
Timoshchuk
,
M. I.
,
Zhang
,
L.
,
Dickinson
,
B. A.
,
Ridge
,
J. S.
,
Kim
,
A. S.
,
Baltuck
,
C. T.
,
Nelson
,
L. Y.
,
Berg
,
J. H.
, and
Seibel
,
E. J.
,
2014
, “
Guided Fluorescence Diagnosis of Childhood Caries: Preliminary Measures Correlate With Depth of Carious Decay
,”
Proc. SPIE
,
8929
, p.
892904
.
21.
Zhang
,
L.
,
Nelson
,
L. Y.
,
Berg
,
J. H.
,
Eichenholz
,
J. M.
, and
Seibel
,
E. J.
,
2012
, “
Optical Measure of Enamel Health: Ability to Triage High Risk Children in Communities Without Dental Practitioners
,”
IEEE Global Humanitarian Technology Conference
(
GHTC
), Seattle, WA, Oct. 21–24, pp.
345
349
.
22.
Açil
,
Y.
,
Mobasseri
,
A. E.
,
Warnke
,
P. H.
,
Terheyden
,
H.
,
Wiltfang
,
J.
, and
Springer
,
I.
,
2005
, “
Detection of Mature Collagen in Human Dental Enamel
,”
Calcified Tissue Int.
,
76
(
2
), pp.
121
126
.
23.
Lin
,
C. P.
,
Douglas
,
W. H.
, and
Erlandsen
,
S. L.
,
1993
, “
Scanning Electron Microscopy of Type I Collagen at the Dentin-Enamel Junction of Human Teeth
,”
J. Histochem. Cytochem.
,
41
(
3
), pp.
381
388
.
24.
Lucchese
,
A.
,
Pilolli
,
G. P.
,
Petruzzi
,
M.
,
Crincoli
,
V.
,
Scivetti
,
M.
, and
Favia
,
G.
,
2008
, “
Analysis of Collagen Distribution in Human Crown Dentin by Confocal Laser Scanning Microscopy
,”
Ultrastruct. Pathol.
,
32
(
3
), pp.
107
111
.
25.
Yeoh
,
I. L.
,
Reinhall
,
P. G.
,
Berg
,
M. C.
, and
Seibel
,
E. J.
,
2015
, “
Self-Contained Image Recalibration in a Scanning Fiber Endoscope Using Piezoelectric Sensing
,”
ASME J. Med. Devices
,
9
(
1
), p.
011004
.
26.
Christie
,
R. M.
,
1994
, “
Pigments, Dyes and Fluorescent Brightening Agents for Plastics: An Overview
,”
Polym. Int.
,
34
(
4
), pp.
351
361
.
27.
McVeigh
,
P. Z.
,
Sacho
,
R.
,
Weersink
,
R. A.
,
Pereira
,
V. M.
,
Kucharczyk
,
W.
,
Seibel
,
E. J.
,
Wilson
,
B. C.
, and
Krings
,
T.
,
2014
, “
High-Resolution Angioscopic Imaging During Endovascular Neurosurgery
,”
Neurosurgery
,
75
(
2
), pp.
171
180
.
28.
Shenoy
,
A.
,
2008
, “
Is It the End of the Road for Dental Amalgam? A Critical Review
,”
J. Conservative Dent.
,
11
(
3
), pp.
99
107
.
29.
Hamilton
,
J. D.
,
2012
, “
Visual Enhancement Will Shape Dentistry's Future
,”
Biophotonics
,
5
(
1
), pp.
34
36
.
30.
Stambaugh
,
R. V.
,
Myers
,
G.
,
Ebling
,
W.
,
Beckman
,
B.
, and
Stambaugh
,
K.
,
2002
, “
Endoscopic Visualization of the Submarginal Gingiva Dental Sulcus and Tooth Root Surfaces
,”
J. Periodontology
,
73
(
4
), pp.
374
382
.
31.
Yu
,
A. W.
,
Duncan
,
J. M.
,
Daurka
,
J. S.
,
Lewis
,
A.
, and
Cobb
,
J.
,
2015
, “
A Feasibility Study Into the Use of Three-Dimensional Printer Modelling in Acetabular Fracture Surgery
,”
Adv. Orthop.
,
2015
, p.
617046
.
You do not currently have access to this content.