Fusion of robotics and minimally invasive surgery (MIS) has created new opportunities to develop diagnostic and therapeutic tools. Surgical robotics is advancing from externally actuated systems to miniature in-vivo robotics. However, with miniaturization of electric-motor-driven surgical robots, there comes a trade-off between the size of the robot and its capability. Slow actuation, low load capacity, sterilization difficulties, leaking electricity and transferring produced heat to tissues, and high cost are among the key limitations of the use of electric motors in in-vivo applications. Fluid power in the form of hydraulics or pneumatics has a long history in driving many industrial devices and could be exploited to circumvent these limitations. High power density and good compatibility with the in-vivo environment are the key advantages of fluid power over electric motors when it comes to in-vivo applications. However, fabrication of hydraulic/pneumatic actuators within the desired size and pressure range required for in-vivo surgical robotic applications poses new challenges. Sealing these types of miniature actuators at operating pressures requires obtaining very fine surface finishes which is difficult and costly. The research described here presents design, fabrication, and testing of a hydraulic/pneumatic double-acting cylinder, a limited-motion vane motor, and a balloon-actuated laparoscopic grasper. These actuators are small, seal-less, easy to fabricate, disposable, and inexpensive, thus ideal for single-use in-vivo applications. To demonstrate the ability of these actuators to drive robotic joints, they were modified and integrated in a robotic arm. The design and testing of this surgical robotic arm are presented to validate the concept of fluid-power actuators for in-vivo applications.

References

1.
Intuitive Surgical
,
2014
, “
The da Vinci Surgical System
,” Intuitive Surgical, Inc., Sunnyvale, CA, accessed June 3,
2014
, www.intuitivesurgical.com/products/davinci_surgical_system/
2.
Wortman
,
T. D.
,
Strabala
,
K. W.
,
Lehman
,
A. C.
,
Farritor
,
S. M.
, and
Oleynikov
,
D.
,
2011
, “
Laparoendoscopic Single-Site Surgery Using a Multi-Functional Miniature In Vivo Robot
,”
Int. J. Med. Robot. Comput. Assisted Surg.
,
7
(
1
), pp.
17
21
.
3.
Wortman
,
T. D.
,
Meyer
,
A.
,
Dolghi
,
O.
,
Lehman
,
A. C.
,
McCormick
,
R. L.
,
Farritor
,
S. M.
, and
Oleynikov
,
D.
,
2012
, “
Miniature Surgical Robot for Laparoendoscopic Single-Incision Colectomy
,”
Surg. Endoscopy
,
26
(
3
), pp.
727
731
.
4.
McCormick
,
R.
,
Wortman
,
T.
,
Strabala
,
K. W.
,
Frederick
,
T. P.
,
Oleynikov
,
D.
, and
Farritor
,
S. M.
,
2011
, “
Kinematic and Workspace Comparison of Four and Five Degree of Freedom Miniature In Vivo Surgical Robot
,”
ASME J. Med. Devices
,
5
(
2
), p.
027533
.
5.
Lehman
,
A. C.
,
Dumpert
,
J.
,
Wood
,
N. A.
,
Redden
,
L.
,
Visty
,
A. Q.
,
Farritor
,
S.
,
Varnell
,
B.
, and
Oleynikov
,
D.
,
2009
, “
Natural Orifice Cholecystectomy Using a Miniature Robot
,”
Surg. Endoscopy.
,
23
(
2
), pp.
260
266
.
6.
Rentschler
,
M.
,
Dumpert
,
J.
,
Platt
,
S. R.
,
Iagnemma
,
K.
,
Oleynikov
,
D.
, and
Farritor
,
S. M.
,
2007
, “
An In Vivo Mobile Robot for Surgical Vision and Task Assistance
,”
ASME J. Med. Devices
,
1
(
1
), pp.
23
29
.
7.
Hawks
,
J.
,
2010
, “
Improved Mobile Wireless In Vivo Surgical Robots: Modular Design, Experimental Results, and Analysis
,”
Ph.D. thesis
,
University of Nebraska-Lincoln
,
Lincoln, NE
.http://digitalcommons.unl.edu/mechengdiss/17/
8.
Di Natali
,
C.
,
Ranzani
,
T.
,
Simi
,
M.
,
Menciassi
,
A.
, and
Valdastri
,
P.
,
2012
, “
Trans-Abdominal Active Magnetic Linkage for Robotic Surgery: Concept Definition and Model Assessment
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Saint Paul, MN, May 14–18, pp.
695
700
.
9.
Seow
,
C. M.
,
Chin
,
W. J.
,
Nelson
,
C. A.
,
Nakamura
,
A.
,
Farritor
,
S. M.
, and
Oleynikov
,
D.
,
2013
, “
Articulated Manipulator With Multiple Instruments for Natural Orifice Transluminal Endoscopic Surgery
,”
ASME J. Med. Devices
,
7
(
4
), p.
041004
.
10.
Shen
,
T.
,
Nelson
,
C. A.
,
Warburton
,
K.
, and
Oleynikov
,
D.
,
2015
, “
Design and Analysis of a Novel Articulated Drive Mechanism for Multifunctional NOTES Robot
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011004
.
11.
Harada
,
K.
,
Oetomo
,
D.
,
Susiloa
,
E.
,
Menciassi
,
A.
,
Daney
,
D.
,
Merlet
,
J. P.
, and
Dario
,
P.
,
2010
, “
A Reconfigurable Modular Robotic Endoluminal Surgical System: Visions and Preliminary Results
,”
Robotica
,
28
(
2
), pp.
171
183
.
12.
Nagy
,
Z.
,
Oung
,
R.
,
Abbott
,
J. J.
, and
Nelson
,
B. J.
,
2008
, “
Experimental Investigation of Magnetic Self-Assembly for Swallowable Modular Robots
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems
, Nice, France, Sept. 22–26, pp.
1915
1920
.
13.
Patronik
,
N.
,
Zenati
,
M. A.
, and
Riviere
,
C. N.
,
2004
, “
Crawling on the Heart: A Mobile Robotic Device for Minimally Invasive Cardiac Interventions
,”
7th International Conference on Medical Image Computing and Computer-Assisted Intervention
, Saint-Malo, France, Sept. 26–29, Vol.
3217
, pp.
9
16
.
14.
Patronik
,
N.
,
Zenati
,
M. A.
, and
Riviere
,
C. N.
,
2005
, “
Preliminary Evaluation of a Mobile Robotic Device for Navigation and Intervention on the Beating Heart
,”
Comput. Aided Surg.
,
10
(
4
), pp.
225
232
.
15.
Berg
,
D. R.
,
2013
, “
Design of a Hydraulic Dexterous Manipulator for Minimally Invasive Surgery
,”
Ph.D. dissertation
, University of Minnesota Twin Cities, Minneapolis, MN.http://s3.amazonaws.com/drb_website_storage/devinberg.com/DevinBerg_dissertation2013s.pdf
16.
Berg
,
D. R.
,
Li
,
P. Y.
, and
Erdman
,
A. G.
,
2012
, “
Achieving Dexterous Manipulation for Minimally Invasive Surgical Robots Through the Use of Hydraulics
,”
ASME
Paper No. DSCC2012-MOVIC2012-8685.
17.
Lehman
,
A. C.
,
2012
, “
Miniature In Vivo Robots for Minimally Invasive Surgery
,”
Ph.D. thesis
,
University of Nebraska-Lincoln
,
Lincoln, NE
.http://gradworks.umi.com/35/21/3521519.html
18.
Hollerbach
,
J. M.
,
Hunter
,
I. W.
, and
Ballantyne
,
J.
,
1992
, “
A Comparative Analysis of Actuator Technologies for Robotics
,”
The Robotics Review
, Vol.
2
,
MIT Press
Cambridge, MA
, pp.
299
342
.
19.
Granosik
,
G.
, and
Borenstein
,
J.
,
2006
, “
Pneumatic Actuators for Serpentine Robot
,”
Climbing and Walking Robots
,
Springer
,
Berlin
, pp.
719
726
.
20.
De Volder
,
M.
, and
Reynaerts
,
D.
,
2010
, “
Pneumatic and Hydraulic Microactuators: A Review
,”
J. Micromech. Microeng.
,
20
(
4
), p.
043001
.
21.
Pourghodrat
,
A.
,
Dehghani
,
H.
,
Nelson
,
C. A.
,
Oleynikov
,
D.
,
Dasgupta
,
P.
, and
Terry
,
B. S.
,
2014
, “
Disposable Fluidic Self-Propelling Robot for Colonoscopy
,”
ASME J. Med. Devices
,
8
(
3
), p.
039301
.
22.
Kim
,
B.
,
Lim
,
H. Y.
,
Park
,
J. H.
, and
Park
,
J. O.
,
2006
, “
Inchworm-Like Colonoscopic Robot With Hollow Body and Steering Device
,”
JSME Int. J. Ser. C
,
49
(
1
), pp.
205
212
.
23.
Shike
,
M.
,
Fireman
,
Z.
,
Eliakim
,
R.
,
Segol
,
O.
,
Sloyer
,
A.
,
Cohen
,
L. B.
,
Goldfarb-Albak
,
S.
, and
Repici
,
A.
,
2008
, “
Sightline ColonoSight System for a Disposable, Power-Assisted, Non-Fiber-Optic Colonoscopy (With Video)
,”
Gastrointest. Endoscopy
,
68
(
4
), pp.
701
711
.
24.
De Visser
,
H.
,
Heijnsdijk
,
E. A.
,
Herder
,
J. L.
, and
Pistecky
,
P. V.
,
2002
, “
Forces and Displacements in Colon Surgery
,”
Surg. Endoscopy
,
16
(
10
), pp.
1426
1430
.
25.
Pourghodrat
,
A.
, and
Nelson
,
C. A.
,
2013
, “
Miniature Fluidic Actuators for Surgical Robotics
,”
ASME J. Med. Devices
,
8
(
3
), p.
030920
.
26.
Faulhaber
,
2015
, “
DC-Micromotors
,”
FAULHABER Miniature Drive Systems
,
Switzerland
, accessed Dec. 3,
2015
, http://www.faulhaber.com/
27.
Symmetry Surgical
,
2015
, “
Laparoscopic Portfolio
,”
Symmetry Surgical, Symmetry Surgical, Inc.,
Antioch, TN
, accessed Aug. 2,
2015
, http://www.symmetrysurgical.com
28.
Pourghodrat
,
A.
,
Nelson
,
C.
, and
Oleynikov
,
D.
,
2014
, “
Electrohydraulic Robotic Manipulator With Multiple Instruments for Minimally Invasive Surgery
,”
ASME J. Med. Devices
,
8
(
3
), p.
030919
.
29.
Soleimani
,
M.
,
2003
, “
Development of a Novel Balloon-Shape Electroactive Polymer (EAP) Actuator
,”
Master's thesis
,
Simon Fraser University, Burnaby BC
,
Canada
.http://summit.sfu.ca/item/12153
30.
Cantournet
,
C.
,
Desmorat
,
R.
, and
Bessona
,
J.
,
2009
, “
Mullins Effect and Cyclic Stress Softening of Filled Elastomers by Internal Sliding and Friction Thermodynamics Model
,”
Int. J. Solids Struct.
,
46
(
11–12
), pp.
2255
2264
.
You do not currently have access to this content.