Abstract

Robotic-assisted lumbar puncture (LP) has been explored in recent years. The most important step in this procedure is accurately and safely puncturing the spinal membrane (dura mater) based on an automatic needle insertion device (NID). Piezoactuated NID has shown its advantages with high precision and compact structure. Soft control of the NID is important for insertion safety; however, for stick-slip piezoactuated NID, there are few studies due to the complex mechanism of stick-slip motion. Here, a modeling and admittance control method for a proposed stick-slip piezoactuated NID is proposed for safe puncture of the spinal membrane. To analytically model the NID, the compliant mechanism (CM) in the NID is reduced to a second-order system. The stick-slip friction and the spinal membrane are modeled based on the LuGre model and the Hunt–Crossley model, respectively. Based on these models, an admittance controller (AC) for the proposed NID is established to realize the precise control of the position and the safety protection against puncture errors. Simulations and preliminary experiments based on a prototype of the NID and a phantom of the spinal membrane were carried out to test the proposed modeling and control method. Results show that the proposed NID with AC has a maximum insertion error of 0.62 mm and the insertion depth decays by 80% when an unexpected force is applied. Therefore, the proposed model and control method have the potential to be used in real LP procedures by further development.

References

1.
Duan
,
Y.
,
Ling
,
J.
,
Feng
,
Z.
,
Yao
,
D.
, and
Zhu
,
Y.
,
2024
, “
Development of a Base-Actuated Three-Rhombus Configured Remote Center of Motion Mechanism for Lumbar Puncture
,”
ASME J. Mech. Rob.
,
16
(
5
), p.
054503
.10.1115/1.4062761
2.
Gao
,
C.
,
Phalen
,
H.
,
Margalit
,
A.
,
Ma
,
J. H.
,
Ku
,
P. C.
,
Unberath
,
M.
,
Taylor
,
R. H.
,
Jain
,
A.
, and
Armand
,
M.
,
2022
, “
Fluoroscopy-Guided Robotic System for Transforaminal Lumbar Epidural Injections
,”
IEEE Trans. Med. Rob. Bionics
,
4
(
4
), pp.
901
909
.10.1109/TMRB.2022.3196321
3.
Li
,
J.
, and
Jiang
,
Q.
,
2023
, “
Optimal Design and Experiment of Cable-Driven Puncturing Surgery Robot for Soft Needle
,”
ASME J. Med. Devices
,
17
(
2
), p.
021008
.10.1115/1.4056865
4.
McDonald
,
R. C.
,
2022
, “
Development of a pO2-Guided Fine Needle Tumor Biopsy Device
,”
ASME J. Med. Devices
,
16
(
2
), p.
021003
.10.1115/1.4052900
5.
Duan
,
Y.
,
Ling
,
J.
,
Feng
,
Z.
,
Ye
,
T.
,
Sun
,
T.
, and
Zhu
,
Y.
,
2024
, “
A Survey of Needle Steering Approaches in Minimally Invasive Surgery
,”
Ann. Biomed. Eng.
,
52
(
6
), pp.
1492
1517
.10.1007/s10439-024-03494-0
6.
Feng
,
Z.
,
Liang
,
W.
,
Ling
,
J.
,
Xiao
,
X.
,
Tan
,
K. K.
, and
Lee
,
T. H.
,
2022
, “
Adaptive Robust Impedance Control for an Ear Surgical Device With Soft Interaction
,”
IEEE/ASME Trans. Mechatron.
,
27
(
3
), pp.
1784
1795
.10.1109/TMECH.2021.3087014
7.
Du
,
Z.
,
Liang
,
Y.
,
Yan
,
Z.
,
Sun
,
L.
, and
Chen
,
W.
,
2021
, “
Human-Robot Interaction Control of a Haptic Master Manipulator Used in Laparoscopic Minimally Invasive Surgical Robot System
,”
Mech. Mach. Theory
,
156
, p.
104132
.10.1016/j.mechmachtheory.2020.104132
8.
Holton
,
L. L. H.
,
2000
, “
Development of a Haptic Feedback Model for Computer Simulation of the Epidural Anesthesia Needle Insertion Procedure
,” The Ohio State University, Columbus, OH.
9.
El Bannan
,
K.
,
Chronik
,
B. A.
, and
Salisbury
,
S. P.
,
2015
, “
Development of an MRI-Compatible Compact, Rotary-Linear Piezoworm Actuator
,”
ASME J. Med. Devices
,
9
(
1
), p.
014501
.10.1115/1.4028943
10.
Deng
,
J.
,
Liu
,
S.
,
Liu
,
Y.
,
Wang
,
L.
,
Gao
,
X.
, and
Li
,
K.
,
2022
, “
A 2-DOF Needle Insertion Device Using Inertial Piezoelectric Actuator
,”
IEEE Trans. Ind. Electron.
,
69
(
4
), pp.
3918
3927
.10.1109/TIE.2021.3073313
11.
Wang
,
X.
,
Zhu
,
L.
, and
Huang
,
H.
,
2021
, “
A Dynamic Model of Stick-Slip Piezoelectric Actuators Considering the Deformation of Overall System
,”
IEEE Trans. Ind. Electron.
,
68
(
11
), pp.
11266
11275
.10.1109/TIE.2020.3032922
12.
Rakotondrabe
,
M.
,
Haddab
,
Y.
, and
Lutz
,
P.
,
2009
, “
Development, Modeling, and Control of a Micro-/Nanopositioning 2-DOF Stick–Slip Device
,”
IEEE/ASME Trans. Mechatron.
,
14
(
6
), pp.
733
745
.10.1109/TMECH.2009.2011134
13.
Rakotondrabe
,
M.
,
Haddab
,
Y.
, and
Lutz
,
P.
,
2008
, “
Voltage/Frequency Proportional Control of Stick-Slip Micropositioning Systems
,”
IEEE Trans. Control Syst. Technol.
,
16
(
6
), pp.
1316
1322
.10.1109/TCST.2008.917232
14.
Duan
,
Y.
,
Peng
,
H.
,
Zhu
,
Y.
,
Shen
,
Y.
, and
Ling
,
J.
,
2023
, “
Inertial Piezoelectric Actuation of a Needle Insertion Device for Minimally Invasive Surgery
,” Proceedings of the 2023 IEEE International Conference on Robotics and Biomimetics (
ROBIO
), Koh Samui, Thailand, Dec. 4–9, pp.
1
6
.10.1109/ROBIO58561.2023.10354709
15.
Hogan
,
N.
,
1984
, “
Impedance Control: An Approach to Manipulation
,”
Proceedings of the 1984 American Control Conference
, San Diego, CA, June 6–8, pp.
304
313
.10.23919/ACC.1984.4788393
16.
Ott
,
C.
,
Mukherjee
,
R.
, and
Nakamura
,
Y.
,
2010
, “
Unified Impedance and Admittance Control
,”
Proceedings of the 2010 IEEE International Conference on Robotics and Automation
, Anchorage, AK, May 3–7, pp.
554
561
.10.1109/ROBOT.2010.5509861
17.
Cousin
,
C. A.
,
2020
, “
Adaptive Admittance Control of Hybrid Exoskeletons
,” Proceedings of the 2020 American Control Conference (
ACC
), Denver, CO, July 1–3, pp.
545
550
.10.23919/ACC45564.2020.9147928
18.
Li
,
H.
,
Nie
,
X.
,
Duan
,
D.
,
Li
,
Y.
,
Zhang
,
J.
,
Zhou
,
M.
, and
Magid
,
E.
,
2022
, “
An Admittance-Controlled Amplified Force Tracking Scheme for Collaborative Lumbar Puncture Surgical Robot System
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
18
(
5
), p.
e2428
.10.1002/rcs.2428
19.
Paranawithana
,
I.
,
Li
,
H.-Y.
,
Foong
,
S.
,
Tan
,
U.-X.
,
Yang
,
L.
,
Lim
,
T. S. K.
, and
Ng
,
F. C.
,
2018
, “
Ultrasound-Guided Involuntary Motion Compensation of Kidney Stones in Percutaneous Nephrolithotomy Surgery
,” Proceedings of the 2018 IEEE 14th International Conference on Automation Science and Engineering (
CASE
), Munich, Germany, Aug. 20–24, pp.
1123
1129
.10.1109/COASE.2018.8560358
20.
Aydin
,
Y.
,
Tokatli
,
O.
,
Patoglu
,
V.
, and
Basdogan
,
C.
,
2018
, “
Stable Physical Human-Robot Interaction Using Fractional Order Admittance Control
,”
IEEE Trans. Haptics
,
11
(
3
), pp.
464
475
.10.1109/TOH.2018.2810871
21.
Zhang
,
Y.
,
Peng
,
Y.
,
Sun
,
Z.
, and
Yu
,
H.
,
2019
, “
A Novel Stick–Slip Piezoelectric Actuator Based on a Triangular Compliant Driving Mechanism
,”
IEEE Trans. Ind. Electron.
,
66
(
7
), pp.
5374
5382
.10.1109/TIE.2018.2868274
22.
Feng
,
Z.
,
Liang
,
W.
,
Ling
,
J.
,
Xiao
,
X.
,
Tan
,
K. K.
, and
Lee
,
T. H.
,
2022
, “
Precision Force Tracking Control of a Surgical Device Interacting With a Deformable Membrane
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
5327
5338
.10.1109/TMECH.2022.3177792
23.
De Wit
,
C. C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), pp.
419
425
.10.1109/9.376053
24.
Huo
,
Z.
,
Tian
,
Y.
,
Wang
,
F.
,
Zhang
,
W.
,
Shi
,
B.
, and
Zhang
,
D.
,
2022
, “
A Dual-Driven High Precision Rotary Platform Based on Stick-Slip Principle
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
3053
3064
.10.1109/TMECH.2021.3125825
25.
Aydın
,
H. E.
,
Kızmazoglu
,
C.
,
Kaya
,
I.
,
Husemoglu
,
B.
,
Sozer
,
G.
,
Havıtcıoglu
,
H.
, and
Arslantas
,
A.
,
2019
, “
Biomechanical Properties of the Cranial Dura Mater With Puncture Defects: An In Vitro Study
,”
J. Korean Neurosurg. Soc.
,
62
(
4
), pp.
382
388
.10.3340/jkns.2018.0130
26.
Kizmazoglu
,
C.
,
Aydin
,
H. E.
,
Kaya
,
I.
,
Atar
,
M.
,
Husemoglu
,
B.
,
Kalemci
,
O.
,
Sozer
,
G.
, and
Havitcioglu
,
H.
,
2019
, “
Comparison of Biomechanical Properties of Dura Mater Substitutes and Cranial Human Dura Mater: An In Vitro Study
,”
J. Korean Neurosurg. Soc.
,
62
(
6
), pp.
635
642
.10.3340/jkns.2019.0122
You do not currently have access to this content.