Abstract

Abdominal aortic aneurysms (AAA) are often repaired through an endovascular approach known as endovascular aneurysm repair (EVAR). The success and duration of these challenging procedures are primarily attributable to the accuracy and reliability of navigating corresponding interventional devices. This study investigates the performance of conventional nonsteerable and steerable catheters in EVAR procedures, focusing on two primary metrics: reachable workspace and gate cannulation success. We developed two abdominal aortic aneurysm (AAA) phantoms using patient CT images for our experiments. Under X-ray fluoroscopy guidance, the reachable workspace was quantified, and gate cannulation success rates, cannulation time, and fluoroscopy times were recorded for both nonsteerable and steerable catheters and were compared. We were unable to observe statistically significant differences between the two catheter types in overall cannulation success rates or fluoroscopy time. However, in challenging anatomical scenarios (particularly a more challenging gate location), the steerable catheter showed statistically significant advantages in success rates and cannulation times. While there were no statistical differences in reachable workspace between nonsteerable and steerable catheters when considering the whole aneurysm, segmented analysis showed that the steerable catheter performed better in the central region, and nonsteerable catheters performed better in the peripheral region. This study provides a systematic method for quantifying the performance of endovascular devices. The findings suggest that while steerable catheters may offer advantages in complex anatomical conditions, nonsteerable catheters are preferable in peripheral areas of the aneurysm. These insights can inform catheter selection in EVAR, potentially influencing device design and clinical practice.

References

1.
Li
,
X.
,
Zhao
,
G.
,
Zhang
,
J.
,
Duan
,
Z.
, and
Xin
,
S.
,
2013
, “
Prevalence and Trends of the Abdominal Aortic Aneurysms Epidemic in General Population–A Meta-Analysis
,”
PLoS One
,
8
(
12
), p.
e81260
.10.1371/journal.pone.0081260
2.
Singh
,
K.
,
Bønaa
,
K. H.
,
Jacobsen
,
B. K.
,
Bjørk
,
L.
, and
Solberg
,
S.
,
2001
, “
Prevalence of and Risk Factors for Abdominal Aortic Aneurysms in a Population-Based Study: The Tromsø Study
,”
Am. J. Epidemiol.
,
154
(
3
), pp.
236
244
.10.1093/aje/154.3.236
3.
Aggarwal
,
S.
,
Qamar
,
A.
,
Sharma
,
V.
, and
Sharma
,
A.
,
2011
, “
Abdominal Aortic Aneurysm: A Comprehensive Review
,”
Exp. Clin. Cardiol.
,
16
(
1
), pp.
11
15
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3076160/
4.
Sakalihasan
,
N.
,
Limet
,
R.
, and
Defawe
,
O. D.
,
2005
, “
Abdominal Aortic Aneurysm
,”
Lancet
,
365
(
9470
), pp.
1577
1589
.10.1016/S0140-6736(05)66459-8
5.
Greenhalgh
,
R. M.
,
Brown
,
L. C.
,
Powell
,
J. T.
,
Epstein
,
D.
, and
Sculpher
,
M. J.
,
2010
, “
Endovascular Versus Open Repair of Abdominal Aortic Aneurysm
,”
Morg N. Engl. J. Med.
,
362
(
20
), pp.
1863
1871
.10.1056/NEJMoa0909305
6.
Mazzaccaro
,
D.
,
Castronovo
,
E. L.
,
Righini
,
P.
, and
Nano
,
G.
,
2020
, “
Use of Steerable Catheters for Endovascular Procedures: Report of a CASE and Literature Review
,”
Catheter. Cardiovasc. Interv
,
95
(
5
), pp.
971
977
.10.1002/ccd.28380
7.
Wanhainen
,
A.
,
Verzini
,
F.
,
Van Herzeele
,
I.
,
Allaire
,
E.
,
Bown
,
M.
,
Cohnert
,
T.
,
Dick
,
F.
,
van Herwaarden
,
J.
,
Karkos
,
C.
,
Koelemay
,
M.
, and
Kölbel
,
T.
,
2022
, “
European Society for Vascular Surgery (ESVS) 2019 Clinical Practice Guidelines on the Management of Abdominal Aorto-Iliac Artery Aneurysms
,” Acta Angiologica,
28
(
3
), pp.
69
78
.
8.
Jacobs
,
C. R.
,
Scali
,
S. T.
,
Khan
,
T.
,
Cadavid
,
F.
,
Staton
,
K. M.
,
Feezor
,
R. J.
, and
Back
,
M. R.
,
2022
, “
Endovascular Aneurysm Repair Conversion is an Increasingly Common Indication for Open Abdominal Aortic Aneurysm Repair
,”
J. Vasc. Surg.
,
75
(
1
), pp.
144
152
.10.1016/j.jvs.2021.07.121
9.
Rajpal
,
S.
,
Shah
,
M.
,
Vivek
,
N.
, and
Burneikiene
,
S.
,
2020
, “
Analyzing the Correlation Between Surgeon Experience and Patient Length of Hospital Stay
,”
Cureus
,
12
(
8
), p.
e10099
.10.7759/cureus.10099
10.
Cheng
,
H.
,
Clymer
,
J. W.
,
Po-Han Chen
,
B.
,
Sadeghirad
,
B.
,
Ferko
,
N. C.
,
Cameron
,
C. G.
, and
Hinoul
,
P.
,
2018
, “
Prolonged Operative Duration is Associated With Complications: A Systematic Review and Meta-Analysis
,”
J. Surg. Res.
,
229
, pp.
134
144
.10.1016/j.jss.2018.03.022
11.
Holt
,
P. J. E.
,
Karthikesalingam
,
A.
,
Patterson
,
B. O.
,
Ghatwary
,
T.
,
Hinchliffe
,
R. J.
,
Loftus
,
I. M.
, and
Thompson
,
M. M.
,
2012
, “
Aortic Rupture and Sac Expansion After Endovascular Repair of Abdominal Aortic Aneurysm
,”
Br. J. Surg.
,
99
(
12
), pp.
1657
1664
.
12.
Saratzis
,
A.
,
Melas
,
N.
,
Mahmood
,
A.
, and
Sarafidis
,
P.
,
2015
, “
Incidence of Acute Kidney Injury (AKI) After Endovascular Abdominal Aortic Aneurysm Repair (EVAR) and Impact on Outcome
,”
Eur. J. Vasc. Endovasc. Surg.
,
49
(
5
), pp.
534
540
.10.1016/j.ejvs.2015.01.002
13.
Schanzer
,
A.
,
Greenberg
,
R. K.
,
Hevelone
,
N.
,
Robinson
,
W. P.
,
Eslami
,
M. H.
,
Goldberg
,
R. J.
, and
Messina
,
L.
,
2011
, “
Predictors of Abdominal Aortic Aneurysm Sac Enlargement After Endovascular Repair
,”
Circulation
,
123
(
24
), pp.
2848
2855
.10.1161/CIRCULATIONAHA.110.014902
14.
Daye
,
D.
, and
Walker
,
T. G.
,
2018
, “
Complications of Endovascular Aneurysm Repair of the Thoracic and Abdominal Aorta: Evaluation and Management
,”
Cardiovasc. Diagn. Ther.
,
8
(
S1
), pp.
S138
S156
.10.21037/cdt.2017.09.17
15.
Ali
,
A.
,
Plettenburg
,
D. H.
, and
Breedveld
,
P.
,
2016
, “
Steerable Catheters in Cardiology: Classifying Steerability and Assessing Future Challenges
,”
IEEE Trans. Biomed. Eng.
,
63
(
4
), pp.
679
693
.10.1109/TBME.2016.2525785
16.
Ali
,
A.
,
Sakes
,
A.
,
Arkenbout
,
E. A.
,
Henselmans
,
P.
,
van Starkenburg
,
R.
,
Szili-Torok
,
T.
, and
Breedveld
,
P.
,
2019
, “
Catheter Steering in Interventional Cardiology: Mechanical Analysis and Novel Solution
,”
Proc. Inst. Mech. Eng.
,
233
(
12
), pp.
1207
1218
.10.1177/0954411919877709
17.
Wolf
,
Y. G.
,
Tillich
,
M.
,
Lee
,
W. A.
,
Rubin
,
G. D.
,
Fogarty
,
T. J.
, and
Zarins
,
C. K.
,
2001
, “
Impact of Aortoiliac Tortuosity on Endovascular Repair of Abdominal Aortic Aneurysms: Evaluation of 3D Computer-Based Assessment
,”
J. Vasc. Surg.
,
34
(
4
), pp.
594
599
.10.1067/mva.2001.118586
18.
Alawneh
,
Y.
,
Zhou
,
J. J.
,
Sewani
,
A.
,
Tahmasebi
,
M.
,
Roy
,
T. L.
,
Kayssi
,
A.
,
Dueck
,
A. D.
, et al.,
2023
, “
Experimental Protocol and Phantom Design and Development for Performance Characterization of Conventional Devices for Peripheral Vascular Interventions
,”
Ann. Biomed. Eng.
,
51
(
7
), pp.
1547
1557
.10.1007/s10439-023-03160-x
19.
Yu
,
B.
,
Fernández
,
J. D. G.
, and
Tan
,
T.
,
2019
, “
Probabilistic Kinematic Model of a Robotic Catheter for 3D Position Control
,”
Soft Robot.
,
6
(
2
), pp.
184
194
.10.1089/soro.2018.0074
20.
Jones
,
M.
,
Rockley
,
M.
, and
Jetty
,
P.
,
2020
, “
Novel Physician-Modified Steerable Endovascular Catheter
,”
J. Vasc. Surg.
,
72
(
5
), pp.
e349
e350
.10.1016/j.jvs.2020.08.057
21.
Ionita
,
C. N.
,
Mokin
,
M.
,
Varble
,
N.
,
Bednarek
,
D. R.
,
Xiang
,
J.
,
Snyder
,
K. V.
,
Siddiqui
,
A. H.
,
Levy
,
E. I.
,
Meng
,
H.
, and
Rudin
,
S.
,
2014
, “
Challenges and Limitations of Patient-Specific Vascular Phantom Fabrication Using 3D Polyjet Printing
,”
Proceedings of SPIE--The International Society for Optical Engineering
, Vol. 9038, p. 90380M.10.1117/12.2042266
22.
Meess
,
K. M.
,
Izzo
,
R. L.
,
Dryjski
,
M. L.
,
Curl
,
R. E.
,
Harris
,
L. M.
,
Springer
,
M.
,
Siddiqui
,
A. H.
,
Rudin
,
S.
, and
Ionita
,
C. N.
,
2017
, “
3D Printed Abdominal Aortic Aneurysm Phantom for Image Guided Surgical Planning With a Patient Specific Fenestrated Endovascular Graft System
,”
Medical Imaging 2017: Imaging Informatics for Healthcare, Research, and Applications
, Vol. 10138, pp.
159
172
.10.1117/12.2253902
23.
O'Hara
,
R. P.
,
Chand
,
A.
,
Vidiyala
,
S.
,
Arechavala
,
S. M.
,
Mitsouras
,
D.
,
Rudin
,
S.
, and
Ionita
,
C. N.
,
2016
, “
Advanced 3D Mesh Manipulation in Stereolithographic Files and Post-Print Processing for the Manufacturing of Patient-Specific Vascular Flow Phantoms
,”
Medical Imaging 2016: PACS and Imaging Informatics: Next Generation and Innovations
, Vol. 9789, pp.
26
35
.10.1117/12.2217036
24.
Polanczyk
,
A.
,
Podgorski
,
M.
,
Polanczyk
,
M.
,
Piechota-Polanczyk
,
A.
,
Neumayer
,
C.
, and
Stefanczyk
,
L.
,
2018
, “
A Novel Patient-Specific Human Cardiovascular System Phantom (HCSP) for Reconstructions of Pulsatile Blood Hemodynamic Inside Abdominal Aortic Aneurysm
,”
IEEE Access
,
6
, pp.
61896
61903
.10.1109/ACCESS.2018.2876377
25.
Riga
,
C. V.
,
Bicknell
,
C. D.
,
Hamady
,
M.
, and
Cheshire
,
N.
,
2012
, “
Tortuous Iliac Systems—A Significant Burden to Conventional Cannulation in the Visceral Segment: Is There a Role for Robotic Catheter Technology?
,”
J. Vasc. Interv. Radiol.
,
23
(
10
), pp.
1369
1375
.10.1016/j.jvir.2012.07.006
26.
Kärkkäinen
,
J. M.
,
Sandri
,
G.
,
Tenorio
,
E. R.
,
Alexander
,
A.
,
Bjellum
,
K.
,
Matsumoto
,
J.
,
Morris
,
J.
, et al.,
2019
, “
Simulation of Endovascular Aortic Repair Using 3D Printed Abdominal Aortic Aneurysm Model and Fluid Pump
,”
Cardiovasc. Intervent. Radiol.
,
42
(
11
), pp.
1627
1634
.10.1007/s00270-019-02257-y
27.
Torres
,
I. O.
, and
De Luccia
,
N.
,
2017
, “
A Simulator for Training in Endovascular Aneurysm Repair: The Use of Three Dimensional Printers
,”
Eur. J. Vasc. Endovasc. Surg. Off. J. Eur. Soc. Vasc. Surg.
,
54
(
2
), pp.
247
253
.10.1016/j.ejvs.2017.05.011
28.
Wyss
,
T. R.
,
Dick
,
F.
,
Brown
,
L. C.
, and
Greenhalgh
,
R. M.
,
2011
, “
The Influence of Thrombus, Calcification, Angulation, and Tortuosity of Attachment Sites on the Time to the First Graft-Related Complication After Endovascular Aneurysm Repair
,”
J. Vasc. Surg.
,
54
(
4
), pp.
965
971
.10.1016/j.jvs.2011.04.007
29.
Jimenez
,
J. C.
,
Moore
,
W. S.
, and
Quinones-Baldrich
,
W. J.
,
2007
, “
Acute and Chronic Open Conversion After Endovascular Aortic Aneurysm Repair: A 14-Year Review
,”
J. Vasc. Surg.
,
46
(
4
), pp.
642
647
.10.1016/j.jvs.2007.05.030
30.
Koussayer
,
S.
, and
Abuduruk
,
A.
,
2021
, “
Endovascular Management of Contralateral Gate Maldeployment During EVAR: Case Report of Interventional Technique
,”
Int. J. Surg. Case Rep.
,
80
, p.
105637
.10.1016/j.ijscr.2021.02.023
31.
Moulakakis
,
K. G.
,
Dalainas
,
I.
,
Mylonas
,
S.
,
Giannakopoulos
,
T. G.
,
Avgerinos
,
E. D.
, and
Liapis
,
C. D.
,
2010
, “
Conversion to Open Repair After Endografting for Abdominal Aortic Aneurysm: A Review of Causes, Incidence, Results, and Surgical Techniques of Reconstruction
,”
J. Endovasc. Ther.
,
17
(
6
), pp.
694
702
.10.1583/1545-1550-17.6.694
32.
Tiesenhausen
,
K.
,
Hessinger
,
M.
,
Konstantiniuk
,
P.
,
Tomka
,
M.
,
Baumann
,
A.
,
Thalhammer
,
M.
, and
Portugaller
,
H.
,
2006
, “
Surgical Conversion of Abdominal Aortic Stent-Grafts—Outcome and Technical Considerations
,”
Eur. J. Vasc. Endovasc. Surg.
,
31
(
1
), pp.
36
41
.10.1016/j.ejvs.2005.08.027
33.
Ultee
,
K. H. J.
,
Soden
,
P. A.
,
Zettervall
,
S. L.
,
Darling
,
J.
,
Verhagen
,
H. J. M.
, and
Schermerhorn
,
M. L.
,
2016
, “
Conversion From Endovascular to Open Abdominal Aortic Aneurysm Repair
,”
J. Vasc. Surg.
,
64
(
1
), pp.
76
82
.10.1016/j.jvs.2015.12.055
34.
Kudo
,
T.
,
2019
, “
Surgical Complications After Open Abdominal Aortic Aneurysm Repair: Intestinal Ischemia, Buttock Claudication and Sexual Dysfunction
,”
Ann. Vasc. Dis.
,
12
(
2
), pp.
157
162
.10.3400/avd.ra.19-00038
35.
Pakeliani
,
D.
,
Lachat
,
M.
,
Blohmé
,
L.
,
Kobayashi
,
M.
,
Chaykovska
,
L.
,
Pfammatter
,
T.
,
Veith
,
F. J.
, and
Pecoraro
,
F.
,
2019
, “
Improved Technique for Sheath Supported Contralateral Limb Gate Cannulation in Endovascular Abdominal Aortic Aneurysm Repair
,”
Vasa
,
49
(
1
), pp.
39
42
.10.1024/0301-1526/a000820
36.
Kirkwood
,
M. L.
,
Arbique
,
G. M.
,
Guild
,
J. B.
,
Timaran
,
C.
,
Chung
,
J.
,
Anderson
,
J. A.
, and
Valentine
,
R. J.
,
2013
, “
Surgeon Education Decreases Radiation Dose in Complex Endovascular Procedures and Improves Patient Safety
,”
J. Vasc. Surg.
,
58
(
3
), pp.
715
721
.10.1016/j.jvs.2013.04.004
37.
Tam
,
M. D.
,
Latham
,
T.
,
Brown
,
J. R. I.
, and
Jakeways
,
M.
,
2014
, “
Use of a 3D Printed Hollow Aortic Model to Assist EVAR Planning in a Case With Complex Neck Anatomy: Potential of 3D Printing to Improve Patient Outcome
,”
J. Endovasc. Ther.
,
21
(
5
), pp.
760
762
.10.1583/14-4810L.1
38.
Zhou
,
J. J
,
Quadri
,
A.
,
Sewani
,
A.
,
Alawneh
,
Y.
,
Gilliland-Rocque
,
R.
,
Magnin
,
C.
,
Dueck
,
A.
,
Wright
,
G. A.
, and
Tavallaei
,
M. A.
,
2022
, “
The CathPilot: A Novel Approach for Accurate Interventional Device Steering and Tracking
,”
IEEE/ASME Trans. Mechatronics
,
27
(
6
), pp.
5812
5823
.10.1109/TMECH.2022.3188955
39.
Zhou
,
J. J.
,
Alawneh
,
Y.
,
Sewani
,
A.
,
Keshavarz
,
M.
,
Tahmasebi
,
M.
,
Roy
,
T.
,
Kayssi
,
A.
, et al.,
2023
, “
The CathPilot: Performance Validation and Preclinical Safety and Feasibility Assessment
,”
IEEE Trans. Biomed. Eng.
,
70
(
11
), pp.
3116
3125
.10.1109/TBME.2023.3276199
You do not currently have access to this content.