Abstract

Modification of cerebrospinal fluid (CSF) transport dynamics is an expanding method for treating central nervous system injury and diseases. One application of this route is to modify the distribution of solutes in the CSF; however, few tools currently exist for this purpose. The present study describes the use of a subject-specific in vitro CSF phantom to perform a parametric evaluation of the Neurapheresis™ CSF Management System (NP) for both CSF filtration and intrathecal drug circulation. An in vitro CSF phantom was constructed which included realistic anatomy for the complete subarachnoid space (SAS). This platform was configured to test multiple parametric modifications of a dual-lumen catheter and filtration system. Calibrated mapping of tracer distribution and area under the curve (AUC) measurements were used to compare filtration and intrathecal-circulation schemes using the NP device versus the clinical standards of care. The NP device showed potential advantages over lumbar drain (LD) for clearance of simulated subarachnoid hemorrhage (SAH), especially in the spinal canal. Use of the NP device in combination with simulated intracerebroventricular (ICV) drug infusion resulted in an increased extent and uniformity of tracer spread compared to ICV alone. NP improved clearance of simulated subarachnoid hemorrhage compared to LD and increased uniformity of tracer concentration via simulated ICV, providing support for NP use in these scenarios. The in vitro CSF phantom system presented here quantitatively described the effects of parametric boundary modification on solute distribution in the intrathecal space.

References

1.
Pardridge
,
W. M.
,
2005
, “
The Blood-Brain Barrier: Bottleneck in Brain Drug Development
,”
NeuroRx
,
2
(
1
), pp.
3
14
.10.1602/neurorx.2.1.3
2.
Engelhardt
,
B.
, and
Sorokin
,
L.
,
2009
, “
The Blood-Brain and the Blood-Cerebrospinal Fluid Barriers: Function and Dysfunction
,”
Semin. Immunopathol.
,
31
(
4
), pp.
497
511
.10.1007/s00281-009-0177-0
3.
Markowicz-Piasecka
,
M.
,
Darłak
,
P.
,
Markiewicz
,
A.
,
Sikora
,
J.
,
Kumar Adla
,
S.
,
Bagina
,
S.
, and
Huttunen
,
K. M.
,
2022
, “
Current Approaches to Facilitate Improved Drug Delivery to the Central Nervous System
,”
Eur. J. Pharm. Biopharm.
,
181
, pp.
249
262
.10.1016/j.ejpb.2022.11.003
4.
De Andres
,
J.
,
Hayek
,
S.
,
Perruchoud
,
C.
,
Lawrence
,
M. M.
,
Reina
,
M. A.
,
De Andres-Serrano
,
C.
,
Rubio-Haro
,
R.
,
Hunt
,
M.
, and
Yaksh
,
T. L.
,
2022
, “
Intrathecal Drug Delivery: Advances and Applications in the Management of Chronic Pain Patient
,”
Front. Pain Res. (Lausanne)
,
3
, p.
900566
.10.3389/fpain.2022.900566
5.
Muldoon
,
L. L.
,
Soussain
,
C.
,
Jahnke
,
K.
,
Johanson
,
C.
,
Siegal
,
T.
,
Smith
,
Q. R.
,
Hall
,
W. A.
, et al.,
2007
, “
Chemotherapy Delivery Issues in Central Nervous System Malignancy: A Reality Check
,”
J. Clin. Oncol.
,
25
(
16
), pp.
2295
2305
.10.1200/JCO.2006.09.9861
6.
Prakash
,
V.
,
2017
, “
Spinraza—A Rare Disease Success Story
,”
Gene Ther.
,
24
(
9
), p.
497
.10.1038/gt.2017.59
7.
Menendez-Gonzalez
,
M.
,
Padilla-Zambrano
,
H. S.
,
Alvarez
,
G.
,
Capetillo-Zarate
,
E.
,
Tomas-Zapico
,
C.
, and
Costa
,
A.
,
2018
, “
Targeting Beta-Amyloid at the CSF: A New Therapeutic Strategy in Alzheimer's Disease
,”
Front. Aging Neurosci.
,
10
, p.
100
.10.3389/fnagi.2018.00100
8.
Wollinsky
,
K. H.
,
Hulser
,
P. J.
,
Brinkmeier
,
H.
,
Mehrkens
,
H. H.
,
Kornhuber
,
H. H.
, and
Rudel
,
R.
,
1994
, “
Filtration of Cerebrospinal Fluid in Acute Inflammatory Demyelinating Polyneuropathy (Guillain-Barre Syndrome)
,”
Ann. Med. Interne (Paris)
,
145
(
7
), pp.
451
458
.www.pubmed.ncbi.nlm.nih.gov/7864511/
9.
Van Horn
,
A.
, and
Chamberlain
,
M. C.
,
2012
, “
Neoplastic Meningitis
,”
J. Support Oncol.
,
10
(
2
), pp.
45
53
.10.1016/j.suponc.2011.06.002
10.
Bomgaars
,
L.
,
Chamberlain
,
M. C.
,
Poplack
,
D. G.
, and
Blaney
,
S. M.
,
2002
, “
Leptomeningeal Metastases
,”
Cancer in the Nervous System
,
Oxford University Press
, Oxford, UK, pp.
375
394
.
11.
Scott
,
B. J.
,
van Vugt
,
V. A.
,
Rush
,
T.
,
Brown
,
T.
,
Chen
,
C. C.
,
Carter
,
B. S.
,
Schwab
,
R.
, et al.,
2014
, “
Concurrent Intrathecal Methotrexate and Liposomal Cytarabine for Leptomeningeal Metastasis From Solid Tumors: A Retrospective Cohort Study
,”
J. Neurooncol.
,
119
(
2
), pp.
361
368
.10.1007/s11060-014-1486-2
12.
Hsu
,
Y.
,
Hettiarachchi
,
H. D.
,
Zhu
,
D. C.
, and
Linninger
,
A. A.
,
2012
, “
The Frequency and Magnitude of Cerebrospinal Fluid Pulsations Influence Intrathecal Drug Distribution: Key Factors for Interpatient Variability
,”
Anesth. Analg.
,
115
(
2
), pp.
386
394
.10.1213/ANE.0b013e3182536211
13.
Linninger
,
A. A.
,
Tsakiris
,
C.
,
Zhu
,
D. C.
,
Xenos
,
M.
,
Roycewicz
,
P.
,
Danziger
,
Z.
, and
Penn
,
R.
,
2005
, “
Pulsatile Cerebrospinal Fluid Dynamics in the Human Brain
,”
IEEE Trans. Biomed. Eng.
,
52
(
4
), pp.
557
565
.10.1109/TBME.2005.844021
14.
Fleischhack
,
G.
,
Jaehde
,
U.
, and
Bode
,
U.
,
2005
, “
Pharmacokinetics Following Intraventricular Administration of Chemotherapy in Patients With Neoplastic Meningitis
,”
Clin. Pharmacokinet.
,
44
(
1
), pp.
1
31
.10.2165/00003088-200544010-00001
15.
Balis
,
F. M.
,
Blaney
,
S. M.
,
McCully
,
C. L.
,
Bacher
,
J. D.
,
Murphy
,
R. F.
, and
Poplack
,
D. G.
,
2000
, “
Methotrexate Distribution Within the Subarachnoid Space After Intraventricular and Intravenous Administration
,”
Cancer Chemother. Pharmacol.
,
45
(
3
), pp.
259
264
.10.1007/s002800050038
16.
Moser
,
A. M.
,
Adamson
,
P. C.
,
Gillespie
,
A. J.
,
Poplack
,
D. G.
, and
Balis
,
F. M.
,
1999
, “
Intraventricular Concentration Times Time (C x T) Methotrexate and Cytarabine for Patients With Recurrent Meningeal Leukemia and Lymphoma
,”
Cancer
,
85
(
2
), pp.
511
516
.10.1002/(SICI)1097-0142(19990115)85:2<511::AID-CNCR33>3.0.CO;2-H
17.
Pinedo
,
H. M.
, and
Chabner
,
B. A.
,
1977
, “
Role of Drug Concentration, Duration of Exposure, and Endogenous Metabolites in Determining Methotrexate Cytotoxicity
,”
Cancer Treat. Rep.
,
61
(
4
), pp.
709
715
.www.pubmed.ncbi.nlm.nih.gov/884693/https://doi.org/pubmed.ncbi.nlm.nih.gov/884693/
18.
Zeineddine
,
H. A.
,
Honarpisheh
,
P.
,
McBride
,
D.
,
Pandit
,
P. K. T.
,
Dienel
,
A.
,
Hong
,
S. H.
,
Grotta
,
J.
, and
Blackburn
,
S.
,
2022
, “
Targeting Hemoglobin to Reduce Delayed Cerebral Ischemia After Subarachnoid Hemorrhage
,”
Transl. Stroke Res.
,
13
(
5
), pp.
725
735
.10.1007/s12975-022-00995-9
19.
Macdonald
,
R. L.
,
2014
, “
Delayed Neurological Deterioration After Subarachnoid Haemorrhage
,”
Nat. Rev. Neurol.
,
10
(
1
), pp.
44
58
.10.1038/nrneurol.2013.246
20.
Clark
,
J. F.
, and
Sharp
,
F. R.
,
2006
, “
Bilirubin Oxidation Products (BOXes) and Their Role in Cerebral Vasospasm After Subarachnoid Hemorrhage
,”
J. Cereb. Blood Flow Metab.
,
26
(
10
), pp.
1223
1233
.10.1038/sj.jcbfm.9600280
21.
Stokum
,
J. A.
,
Cannarsa
,
G. J.
,
Wessell
,
A. P.
,
Shea
,
P.
,
Wenger
,
N.
, and
Simard
,
J. M.
,
2021
, “
When the Blood Hits Your Brain: The Neurotoxicity of Extravasated Blood
,”
Int. J. Mol. Sci.
,
22
(
10
), p.
5132
.10.3390/ijms22105132
22.
Wolf
,
S.
,
Mielke
,
D.
,
Barner
,
C.
,
Malinova
,
V.
,
Kerz
,
T.
,
Wostrack
,
M.
,
Czorlich
,
P.
, et al.,
2023
, “
Effectiveness of Lumbar Cerebrospinal Fluid Drain Among Patients With Aneurysmal Subarachnoid Hemorrhage: A Randomized Clinical Trial
,”
JAMA Neurol.
,
80
(
8
), pp.
833
842
.10.1001/jamaneurol.2023.1792
23.
Alcalá-Cerra
,
G.
,
Paternina-Caicedo
,
Á.
,
Díaz-Becerra
,
C.
,
Moscote-Salazar
,
L. R.
,
Gutiérrez-Paternina
,
J. J.
, and
Niño-Hernández
,
L. M.
,
2016
, “
External Lumbar Cerebrospinal Fluid Drainage in Patients With Aneurysmal Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis of Controlled Trials
,”
Neurologia
,
31
(
7
), pp.
431
444
.10.1016/j.nrl.2014.01.005
24.
Panni
,
P.
,
Fugate
,
J. E.
,
Rabinstein
,
A. A.
, and
Lanzino
,
G.
,
2017
, “
Lumbar Drainage and Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage: A Systematic Review
,”
J. Neurosurg. Sci.
,
61
(
6
), pp.
665
672
.
25.
Al-Tamimi
,
Y. Z.
,
Bhargava
,
D.
,
Feltbower
,
R. G.
,
Hall
,
G.
,
Goddard
,
A. J.
,
Quinn
,
A. C.
, and
Ross
,
S. A.
,
2012
, “
Lumbar Drainage of Cerebrospinal Fluid After Aneurysmal Subarachnoid Hemorrhage: A Prospective, Randomized, Controlled Trial (LUMAS)
,”
Stroke
,
43
(
3
), pp.
677
682
.10.1161/STROKEAHA.111.625731
26.
Spector
,
R.
,
Keep
,
R. F.
,
Robert Snodgrass
,
S.
,
Smith
,
Q. R.
, and
Johanson
,
C. E.
,
2015
, “
A Balanced View of Choroid Plexus Structure and Function: Focus on Adult Humans
,”
Exp. Neurol.
,
267
, pp.
78
86
.10.1016/j.expneurol.2015.02.032
27.
Chazen
,
J. L.
,
Dyke
,
J. P.
,
Holt
,
R. W.
,
Horky
,
L.
,
Pauplis
,
R. A.
,
Hesterman
,
J. Y.
,
Mozley
,
D. P.
, and
Verma
,
A.
,
2017
, “
Automated Segmentation of MR Imaging to Determine Normative Central Nervous System Cerebrospinal Fluid Volumes in Healthy Volunteers
,”
Clin. Imaging
,
43
, pp.
132
135
.10.1016/j.clinimag.2017.02.007
28.
Pollay
,
M.
,
2010
, “
The Function and Structure of the Cerebrospinal Fluid Outflow System
,”
Cerebrospinal Fluid Res.
,
7
, p.
9
.10.1186/1743-8454-7-9
29.
Dhaliwal
,
J.
,
Ruiz-Perez
,
M.
,
Mihaela-Vasilica
,
A.
,
Chari
,
A.
,
Hill
,
C. S.
, and
Thorne
,
L.
,
2023
, “
Survival and Quality of Life After CSF Diversion in Adult Patients With Leptomeningeal Metastasis-Associated Hydrocephalus: A Systematic Review and Meta-Analysis
,”
Neurosurg. Focus
,
55
(
2
), p.
E16
.10.3171/2023.5.FOCUS23195
30.
Heuer
,
G. G.
,
Smith
,
M. J.
,
Elliott
,
J. P.
,
Winn
,
H. R.
, and
LeRoux
,
P. D.
,
2004
, “
Relationship Between Intracranial Pressure and Other Clinical Variables in Patients With Aneurysmal Subarachnoid Hemorrhage
,”
J. Neurosurg.
,
101
(
3
), pp.
408
416
.10.3171/jns.2004.101.3.0408
31.
Blackburn
,
S. L.
,
Grande
,
A. W.
,
Swisher
,
C. B.
,
Hauck
,
E. F.
,
Jagadeesan
,
B.
, and
Provencio
,
J. J.
,
2019
, “
Prospective Trial of Cerebrospinal Fluid Filtration After Aneurysmal Subarachnoid Hemorrhage Via Lumbar Catheter (PILLAR)
,”
Stroke
,
50
(
9
), pp.
2558
2561
.10.1161/STROKEAHA.119.025399
32.
Khani
,
M.
,
Sass
,
L. R.
,
McCabe
,
A. R.
,
Zitella Verbick
,
L. M.
,
Lad
,
S. P.
,
Sharp
,
M. K.
, and
Martin
,
B. A.
,
2020
, “
Impact of Neurapheresis System on Intrathecal Cerebrospinal Fluid Dynamics: A Computational Fluid Dynamics Study
,”
ASME J. Biomech. Eng.
,
142
(
2
), p.
021006
.10.1115/1.4044308
33.
Bretz
,
J. S.
,
Von Dincklage
,
F.
,
Woitzik
,
J.
,
Winkler
,
M. K. L.
,
Major
,
S.
,
Dreier
,
J. P.
,
Bohner
,
G.
, and
Scheel
,
M.
,
2017
, “
The Hijdra Scale Has Significant Prognostic Value for the Functional Outcome of Fisher Grade 3 Patients With Subarachnoid Hemorrhage
,”
Clin. Neuroradiol.
,
27
(
3
), pp.
361
369
.10.1007/s00062-016-0509-0
34.
Norden
,
A. G. W.
,
Dijk
,
G. W.
,
Huizen
,
M. D.
,
Algra
,
A.
, and
Rinkel
,
G. J. E.
,
2006
, “
Interobserver Agreement and Predictive Value for Outcome of Two Rating Scales for the Amount of Extravasated Blood After Aneurysmal Subarachnoid Haemorrhage
,”
J. Neurol.
,
253
(
9
), pp.
1217
1220
.10.1007/s00415-006-0205-0
35.
Khani
,
M.
,
Sass
,
L. R.
,
Sharp
,
M. K.
,
McCabe
,
A. R.
,
Zitella Verbick
,
L. M.
,
Lad
,
S. P.
, and
Martin
,
B. A.
,
2020
, “
In Vitro and Numerical Simulation of Blood Removal From Cerebrospinal Fluid: Comparison of Lumbar Drain to Neurapheresis Therapy
,”
Fluids Barriers CNS
,
17
(
1
), p.
23
.10.1186/s12987-020-00185-5
36.
Sass
,
L. R.
,
Khani
,
M.
,
Natividad
,
G. C.
,
Tubbs
,
R. S.
,
Baledent
,
O.
, and
Martin
,
B. A.
,
2017
, “
A 3D Subject-Specific Model of the Spinal Subarachnoid Space With Anatomically Realistic Ventral and Dorsal Spinal Cord Nerve Rootlets
,”
Fluids Barriers CNS
,
14
(
1
), p.
36
.10.1186/s12987-017-0085-y
37.
Borkar
,
S. A.
,
Singh
,
M.
,
Kale
,
S. S.
,
Suri
,
A.
,
Chandra
,
P. S.
,
Kumar
,
R.
,
Sharma
,
B. S.
,
Gaikwad
,
S.
, and
Mahapatra
,
A. K.
,
2018
, “
Spinal Cerebrospinal Fluid Drainage for Prevention of Vasospasm in Aneurysmal Subarachnoid Hemorrhage: A Prospective, Randomized Controlled Study
,”
Asian J. Neurosurg.
,
13
(
2
), pp.
238
246
.
38.
Khani
,
M.
,
Sass
,
L. R.
,
Xing
,
T.
,
Keith Sharp
,
M.
,
Baledent
,
O.
, and
Martin
,
B. A.
,
2018
, “
Anthropomorphic Model of Intrathecal Cerebrospinal Fluid Dynamics Within the Spinal Subarachnoid Space: Spinal Cord Nerve Roots Increase Steady-Streaming
,”
ASME J. Biomech. Eng.
,
140
(
8
), p.
081012
.10.1115/1.4040401
39.
Damkier
,
H. H.
,
Brown
,
P. D.
, and
Praetorius
,
J.
,
2013
, “
Cerebrospinal Fluid Secretion by the Choroid Plexus
,”
Physiol. Rev.
,
93
(
4
), pp.
1847
1892
.10.1152/physrev.00004.2013
40.
Pope
,
J. E.
,
Deer
,
T. R.
,
Bruel
,
B. M.
, and
Falowski
,
S.
,
2016
, “
Clinical Uses of Intrathecal Therapy and Its Placement in the Pain Care Algorithm
,”
Pain Pract.
,
16
(
8
), pp.
1092
1106
.10.1111/papr.12438
41.
Coenen
,
W.
,
Gutiérrez-Montes
,
C.
,
Sincomb
,
S.
,
Criado-Hidalgo
,
E.
,
Wei
,
K.
,
King
,
K.
,
Haughton
,
V.
,
Martínez-Bazán
,
C.
,
Sánchez
,
A. L.
, and
Lasheras
,
J. C.
,
2019
, “
Subject-Specific Studies of CSF Bulk Flow Patterns in the Spinal Canal: Implications for the Dispersion of Solute Particles in Intrathecal Drug Delivery
,”
AJNR Am. J. Neuroradiol.
,
40
(
7
), pp.
1242
1249
.10.3174/ajnr.A6097
42.
Khani
,
M.
,
Burla
,
G. K. R.
,
Sass
,
L. R.
,
Arters
,
O. N.
,
Xing
,
T.
,
Wu
,
H.
, and
Martin
,
B. A.
,
2022
, “
Human In Silico Trials for Parametric Computational Fluid Dynamics Investigation of Cerebrospinal Fluid Drug Delivery: Impact of Injection Location, Injection Protocol, and Physiology
,”
Fluids Barriers CNS
,
19
(
1
), p.
8
.10.1186/s12987-022-00304-4
43.
Hollister
,
J. C. P.
,
Wang
,
A. C.
,
Kim
,
W.
,
Giza
,
C. C.
,
Prins
,
M. L.
, and
Kavehpour
,
H. P.
,
2023
, “
Shear Thinning Behavior of Cerebrospinal Fluid With Elevated Protein or Cellular Concentration
,”
Front. Phys.
,
11
, p.
1308136
.10.3389/fphy.2023.1308136
44.
Bloomfield
,
I. G.
,
Johnston
,
I. H.
, and
Bilston
,
L. E.
,
1998
, “
Effects of Proteins, Blood Cells and Glucose on the Viscosity of Cerebrospinal Fluid
,”
Pediatr. Neurosurg.
,
28
(
5
), pp.
246
251
.10.1159/000028659
45.
Taye
,
M. A.
,
2020
, “
Sedimentation Rate of Erythrocyte From Physics Prospective
,”
Eur. Phys. J. E: Soft Matter
,
43
(
3
), p.
19
.10.1140/epje/i2020-11943-2
46.
Seiner
,
A.
,
Burla
,
G. K. R.
,
Shrestha
,
D.
,
Bowen
,
M.
,
Horvath
,
J. D.
, and
Martin
,
B. A.
,
2022
, “
Investigation of Human Intrathecal Solute Transport Dynamics Using a Novel In Vitro Cerebrospinal Fluid System Analog
,”
Front. Neuroimaging
,
1
, p.
879098
.10.3389/fnimg.2022.879098
You do not currently have access to this content.