Abstract

Our group has developed a new nitinol endoluminal self-expandable device for microvascular anastomosis. It attaches to each vessel ending with opposite directed microspikes and reaches complete expansion at body temperature, using the nitinol shape memory capacity. The main purpose of this first in vivo trial is to evaluate the mechanical viability of the device and its immediate and early functionality. A recuperation study with seven New Zealand White rabbits was designed. A 1.96 mm outer diameter prototype of the new device was placed on the right femoral artery of each rabbit. Each anastomosis was reassessed on the seventh postoperative day to reevaluate the device function. The average anastomosis time with the new device was 18 min and 45 seg (±0.3 seg). It could be easily placed in all the cases with an average of 1.14 (1) complementary stitches needed to achieve a sealed anastomosis. Patency test was positive for all the cases on the immediate assessment. On the 1 week revision surgery, patency test was negative for the seven rabbits due to blood clot formation inside the device. The new device that we have developed is simple to use and shows correct immediate functionality. On the early assessment, the presence of a foreign body in the endoluminal space caused blood clot formation. We speculate that a heparin eluting version of the device could avoid thrombosis formation. We consider that the results obtained can be valuable for other endoluminal sutureless devices.

References

1.
Tapking
,
C.
,
Kowalewski
,
K. F.
,
Hundeshagen
,
G.
,
Kneser
,
U.
, and
Hirche
,
C.
,
2020
, “
A Systematic Review of Learning Curves in Plastic and Reconstructive Surgery Procedures
,”
Ann. Plast. Surg.
,
85
(
3
), pp.
324
331
.10.1097/SAP.0000000000002211
2.
Lascar
,
I.
,
Totir
,
D.
,
Cinca
,
A.
,
Cortan
,
S.
,
Stefanescu
,
A.
,
Bratianu
,
R.
,
Udrescu
,
G.
,
Calcaianu
,
N.
, and
Zamfirescu
,
D. G.
,
2007
, “
Training Program and Learning Curve in Experimental Microsurgery During the Residency in Plastic Surgery
,”
Microsurgery
,
27
(
4
), pp.
263
267
.10.1002/micr.20352
3.
Shen
,
A. Y.
,
Lonie
,
S.
,
Lim
,
K.
,
Farthing
,
H.
,
Hunter-Smith
,
D. J.
, and
Rozen
,
W. M.
,
2021
, “
Free Flap Monitoring, Salvage, and Failure Timing: A Systematic Review
,”
J. Reconstr. Microsurg.
,
37
(
3
), pp.
300
308
.10.1055/s-0040-1722182
4.
Khorgami
,
Z.
,
Shoar
,
S.
,
Aminian
,
A.
,
Nasiri
,
S.
, and
Mahmoodzadeh
,
H.
,
2011
, “
Stent-and-Glue Sutureless Vascular Anastomosis
,”
Med. Hypotheses
,
77
(
1
), pp.
94
96
.10.1016/j.mehy.2011.03.035
5.
Tashiro
,
K.
,
Yamashita
,
S.
,
Narushima
,
M.
,
Koshima
,
I.
, and
Miyamoto
,
S.
,
2017
, “
Hemi-Intravascular Stenting for Supermicrosurgical Anastomosis
,”
Plast. Reconstr. Surg. Global Open
,
5
(
11
), p.
e1533
.10.1097/GOX.0000000000001533
6.
Vokrri
,
L.
,
Qavdarbasha
,
A.
,
Rudari
,
H.
,
Ahmetaj
,
H.
,
Manxhuka-Kërliu
,
S.
,
Hyseni
,
N.
,
Porcu
,
P.
,
Cinquin
,
P.
, and
Sessa
,
C.
,
2015
, “
Experimental Study of Sutureless Vascular Anastomosis With Use of Glued Prosthesis in Rabbits
,”
Vasc. Health Risk Manage.
, 11(1), p.
211
.10.2147/VHRM.S73104
7.
Qu
,
L.
,
Jing
,
Z.
, and
Wang
,
Y.
,
2004
, “
Sutureless Anastomoses of Small and Medium Sized Vessels by Medical Adhesive
,”
Eur. J. Vasc. Endovasc. Surg.
,
28
(
5
), pp.
526
533
.10.1016/j.ejvs.2004.07.018
8.
Zhu
,
Y.
,
Wei
,
W.
, and
Li
,
Y.
,
2011
, “
2-Octylcyanoacrylate-Assisted Microvascular Anastomosis in Rat Orthotopic Small Bowel Transplantation
,”
J. Reconstr. Microsurg.
,
27
(
3
), pp.
151
156
.10.1055/s-0030-1268854
9.
Qassemyar
,
Q.
,
Michel
,
G.
,
Gianfermi
,
M.
,
Atlan
,
M.
,
Havet
,
E.
, and
Luca-Pozner
,
V.
,
2022
, “
Sutureless Venous Microanastomosis Using Thermosensitive Poloxamer and Cyanoacrylate: Experimental Study on a Rat Model
,”
J. Plast., Reconstr. Aesthetic Surg.
,
75
(
1
), pp.
433
438
.10.1016/j.bjps.2021.05.072
10.
Ang
,
E. S.
,
Tan
,
K. C.
,
Tan
,
L. H. C.
,
Ng
,
R. T. H.
, and
Song
,
I. C.
,
2001
, “
2-Octylcyanoacrylate-Assisted Microvascular Anastomosis: Comparison With a Conventional Suture Technique in Rat Femoral Arteries
,”
J. Reconstr. Microsurg.
,
17
(
3
), pp.
193
202
.10.1055/s-2001-14351
11.
Arora
,
R.
,
Mishra
,
K. S.
,
Bhoye
,
H. T.
,
Dewan
,
A. K.
,
Singh
,
R. K.
, and
Naalla
,
R.
,
2021
, “
Mechanical Anastomotic Coupling Device Versus Hand-Sewn Venous Anastomosis in Head and Neck Reconstruction—An Analysis of 1694 Venous Anastomoses
,”
Indian J. Plast. Surg.
,
54
(
2
), pp.
118
123
.10.1055/s-0041-1731622
12.
Assersen
,
K.
, and
Sørensen
,
J.
,
2014
, “
Intravascular Stenting in Microvascular Anastomoses
,”
J. Reconstr. Microsurg.
,
31
(
2
), pp.
113
118
.10.1055/s-0034-1384812
13.
Zhu
,
Z.
,
Wang
,
X.
,
Huang
,
J.
,
Li
,
J.
,
Ding
,
X.
,
Wu
,
H.
,
Yuan
,
Y.
,
Song
,
X.
, and
Wu
,
Y.
,
2018
, “
Mechanical Versus Hand-Sewn Venous Anastomoses in Free Flap Reconstruction: A Systematic Review and Meta-Analysis
,”
Plast. Reconstr. Surg.
,
141
(
5
), pp.
1272
1281
.10.1097/PRS.0000000000004306
14.
Chang
,
E. I.
,
Galvez
,
M. G.
,
Glotzbach
,
J. P.
,
Hamou
,
C. D.
,
El-Ftesi
,
S.
,
Rappleye
,
C. T.
,
Sommer
,
K.-M.
, et al.,
2011
, “
Vascular Anastomosis Using Controlled Phase Transitions in Poloxamer Gels
,”
Nat. Med.
,
17
(
9
), pp.
1147
1152
.10.1038/nm.2424
15.
Schwaiger
,
N.
,
Wu
,
J.
,
Wright
,
B.
,
Morrissey
,
L.
,
Harris
,
M.
, and
Rohanizadeh
,
R.
,
2010
, “
BioWeld® Tube and Surgical Glue for Experimental Sutureless Venous Microanastomosis
,”
Br. J. Surg.
,
97
(
12
), pp.
1825
1830
.10.1002/bjs.7257
16.
Narushima
,
M.
,
Koshima
,
I.
,
Mihara
,
M.
,
Uchida
,
G.
, and
Gonda
,
K.
,
2008
, “
Intravascular Stenting (IVaS) for Safe and Precise Supermicrosurgery
,”
Ann. Plast. Surg.
,
60
(
1
), pp.
41
44
.10.1097/SAP.0b013e3181804bdb38
17.
Aizawa
,
T.
,
Kuwabara
,
M.
,
Kubo
,
S.
,
Domoto
,
T.
,
Aoki
,
S.
,
Azuma
,
R.
, and
Kiyosawa
,
T.
,
2018
, “
Sutureless Microvascular Anastomosis Using Intravascular Stenting and Cyanoacrylate Adhesive
,”
J. Reconstr. Microsurg.
,
34
(
1
), pp.
008
012
.10.1055/s-0037-1605587
18.
Qassemyar
,
Q.
, and
Michel
,
G.
,
2015
, “
A New Method of Sutureless Microvascular Anastomoses Using a Thermosensitive Poloxamer and Cyanoacrylate: An Experimental Study
,”
Microsurgery
,
35
(
4
), pp.
315
319
.10.1002/micr.22381
19.
Narushima
,
M.
,
Mihara
,
M.
,
Koshima
,
I.
,
Gonda
,
K.
,
Takuya
,
I.
,
Kato
,
H.
,
Nakanishi
,
K.
, et al.,
2009
, “
Intravascular Stenting (IVaS) Method for Fingertip Replantation
,”
Ann. Plast. Surg.
,
62
(
1
), pp.
38
41
.10.1097/SAP.0b013e3181743369
20.
Geierlehner
,
A.
,
Rodi
,
T.
,
Mosahebi
,
A.
,
Tanos
,
G.
, and
Wormald
,
J. C. R.
,
2020
, “
Meta-Analysis of Venous Anastomosis Techniques in Free Flap Reconstruction
,”
J. Plast., Reconstr. Aesthetic Surg.
,
73
(
3
), pp.
409
420
.10.1016/j.bjps.2019.11.033
21.
Umezawa
,
H.
,
Hokazono
,
Y.
,
Taga
,
M.
, and
Ogawa
,
R.
,
2022
, “
Applying the Microvascular Anastomotic Coupler Device to End-to-Side Venous Anastomosis in Reconstructive Surgery
,”
Plast. Reconstr. Surg. Global Open
,
10
(
1
), p.
e4018
.10.1097/GOX.0000000000004018
22.
O'Connor
,
E. F.
,
Rozen
,
W. M.
,
Chowdhry
,
M.
,
Patel
,
N. G.
,
Chow
,
W. T.
,
Griffiths
,
M.
, and
Ramakrishnan
,
V. V.
,
2016
, “
The Microvascular Anastomotic Coupler for Venous Anastomoses in Free Flap Breast Reconstruction Improves Outcomes
,”
Gland Surg.
,
5
(
2
), pp.
88
92
.10.3978/j.issn.2227-684X.2015.05.14
23.
Haug
,
V.
,
Panayi
,
A. C.
,
Kadakia
,
N.
,
Abdulrazzak
,
O.
,
Endo
,
Y.
,
Udeh
,
K.
,
Kollar
,
B.
, et al.,
2021
, “
Use of Venous Couplers in Microsurgical Lower Extremity Reconstruction: A Systematic Review and Meta‐Analysis
,”
Microsurgery
,
41
(
1
), pp.
50
60
.10.1002/micr.30581
24.
Berretti
,
G.
,
Colletti
,
G.
,
Parrinello
,
G.
,
Iavarone
,
A.
,
Vannucchi
,
P.
, and
Deganello
,
A.
,
2018
, “
Pilot Study on Microvascular Anastomosis: Performance and Future Educational Prospects
,”
Acta Otorhinolaryngol. Ital.
,
38
(
4
), pp.
304
309
.10.14639/0392-100X-1583
25.
Orădan
,
A. V.
,
Dindelegan
,
G. C.
,
Vinaşi
,
R. C.
,
Muntean
,
M. V.
,
Dindelegan
,
M. G.
,
Chiriac
,
L.
, and
Volovici
,
V.
,
2022
, “
Reduction of Anastomotic Time Through the Use of Cyanoacrylate in Microvascular Procedures
,”
Plast. Surg.
,
30
(
4
), pp.
335
342
.10.1177/22925503211019619
26.
Malas
,
T.
,
Al-Atassi
,
T.
,
Brandys
,
T.
,
Naik
,
V.
,
Lapierre
,
H.
, and
Lam
,
B. K.
,
2018
, “
Impact of Visualization on Simulation Training for Vascular Anastomosis
,”
J. Thorac. Cardiovasc. Surg.
,
155
(
4
), pp.
1686
1693
.10.1016/j.jtcvs.2017.10.080
27.
Dave
,
A.
,
Singhal
,
M.
,
Tiwari
,
R.
,
Chauhan
,
S.
, and
De
,
M.
,
2022
, “
Effectiveness of a Microsurgery Training Program Using a Chicken Wing Model
,”
J. Plast. Surg. Hand Surg.
,
56
(
4
), pp.
191
197
.10.1080/2000656X.2021.1953043
28.
Maruccia
,
M.
,
Fatigato
,
G.
,
Elia
,
R.
,
Ragusa
,
L. A.
,
Vestita
,
M. G.
,
Nacchiero
,
E.
,
Robusto
,
F.
,
Nicoli
,
F.
, and
Giudice
,
G.
,
2020
, “
Microvascular Coupler Device Versus Hand‐Sewn Venous Anastomosis: A Systematic Review of the Literature and Data Meta‐Analysis
,”
Microsurgery
,
40
(
5
), pp.
608
617
.10.1002/micr.30585
29.
Özer
,
F.
,
Nişancı
,
M.
,
Taş
,
Ç.
,
Rajadas
,
J.
,
Alhan
,
D.
,
Bozkurt
,
Y.
,
Günal
,
A.
,
Demirtaş
,
S.
, and
Işık
,
S.
,
2017
, “
Sutureless Microvascular Anastomosis With the Aid of Heparin Loaded Poloxamer 407
,”
J. Plast., Reconstr. Aesthetic Surg.
,
70
(
2
), pp.
267
273
.10.1016/j.bjps.2016.10.012
You do not currently have access to this content.