Abstract

This study aims to predict mechanical properties of scaffolds made of bioactive glass-carbon nanotube (CNT) composite through finite element analysis (FEA) and their permeability using computational fluid dynamics (CFD) simulations. We start with constructing a three-dimensional model for the complete scaffold using cleaned/denoised images obtained from microcomputed tomography. To save computational effort, a representative volume element (RVE) is carved out from this model such that geometric properties like porosity and tortuosity are preserved. FEA requires material properties for which we have assumed that the CNTs are uniformly dispersed and hence, the composite behaves as a homogeneous isotropic material whose mechanical properties are experimentally obtained from a standard specimen. FEA has been performed on converged mesh for the RVE to obtain the compressive strength of the scaffolds. These computationally obtained compressive strengths compared well with those obtained experimentally, justifying our use of a homogeneous isotropic material model. We repeat the comparison for another geometry fabricated using additive manufacturing and find similarities in computational and experimental results. Hence, the compressive strength of bioactive glass-CNT composite scaffolds can be nondestructively predicted from our bulk identified mechanical properties irrespective of the geometry. For the CFD analysis, fluid flow is simulated in the porous region of the RVE and the estimated permeability of the scaffold is found to be satisfactory for nutrient and oxygen supply. Our study suggests that computational tools can help gain insights into the efficient design of scaffolds by obtaining the geometry having the right balance between strength and permeability for optimum performance.

References

1.
Mondal
,
S.
,
Nguyen
,
T. P.
,
Pham
,
V. H.
,
Hoang
,
G.
,
Manivasagan
,
P.
,
Kim
,
M. H.
,
Nam
,
S. Y.
, and
Oh
,
J.
,
2020
, “
Hydroxyapatite Nano Bioceramics Optimized 3D Printed Poly Lactic Acid Scaffold for Bone Tissue Engineering Application
,”
Ceram. Int.
,
46
(
3
), pp.
3443
3455
.10.1016/j.ceramint.2019.10.057
2.
Chen
,
H.
,
Liu
,
Y.
,
Wang
,
C.
,
Zhang
,
A.
,
Chen
,
B.
,
Han
,
Q.
, and
Wang
,
J.
,
2021
, “
Design and Properties of Biomimetic Irregular Scaffolds for Bone Tissue Engineering
,”
Comput. Biol. Med.
,
130
(
11
), p.
104241
.10.1016/j.compbiomed.2021.104241
3.
Hench
,
L. L.
, and
Polak
,
J. M.
,
2002
, “
Third-Generation Biomedical Materials
,”
Science (80-).
,
295
(
5557
), pp.
1014
1017
.10.1126/science.1067404
4.
Dixit
,
K.
, and
Sinha
,
N.
,
2019
, “
Compressive Strength Enhancement of Carbon Nanotube Reinforced 13-93B1 Bioactive Glass Scaffolds
,”
J. Nanosci. Nanotechnol.
,
19
(
5
), pp.
2738
2746
.10.1166/jnn.2019.16029
5.
Arjunan
,
A.
,
Demetriou
,
M.
,
Baroutaji
,
A.
, and
Wang
,
C.
,
2020
, “
Mechanical Performance of Highly Permeable Laser Melted Ti6Al4V Bone Scaffolds
,”
J. Mech. Behav. Biomed. Mater.
,
102
(
11
), p.
103517
.10.1016/j.jmbbm.2019.103517
6.
Chen
,
Q. Z.
,
Thompson
,
I. D.
, and
Boccaccini
,
A. R.
,
2006
, “
45S5 Bioglass®-Derived Glass–Ceramic Scaffolds for Bone Tissue Engineering
,”
Biomaterials
,
27
(
11
), pp.
2414
2425
.10.1016/j.biomaterials.2005.11.025
7.
Ali
,
D.
,
Ozalp
,
M.
,
Blanquer
,
S. B. G.
, and
Onel
,
S.
,
2020
, “
Permeability and Fluid Flow-Induced Wall Shear Stress in Bone Scaffolds With TPMS and Lattice Architectures: A CFD Analysis
,”
Eur. J. Mech. B/Fluids
,
79
, pp.
376
385
.10.1016/j.euromechflu.2019.09.015
8.
Milan
,
J. L.
,
Planell
,
J. A.
, and
Lacroix
,
D.
,
2009
, “
Computational Modelling of the Mechanical Environment of Osteogenesis Within a Polylactic Acid-Calcium Phosphate Glass Scaffold
,”
Biomaterials
,
30
(
25
), pp.
4219
4226
.10.1016/j.biomaterials.2009.04.026
9.
Entezari
,
A.
,
Roohani-Esfahani
,
S.-I.
,
Zhang
,
Z.
,
Zreiqat
,
H.
,
Dunstan
,
C. R.
, and
Li
,
Q.
,
2016
, “
Fracture Behaviors of Ceramic Tissue Scaffolds for Load Bearing Applications
,”
Sci. Rep.
,
6
, p.
28816
.10.1038/srep28816
10.
Tagliabue
,
S.
,
Rossi
,
E.
,
Baino
,
F.
,
Vitale-Brovarone
,
C.
,
Gastaldi
,
D.
, and
Vena
,
P.
,
2017
, “
Micro-CT Based Finite Element Models for Elastic Properties of Glass–Ceramic Scaffolds
,”
J. Mech. Behav. Biomed. Mater.
,
65
, pp.
248
255
.10.1016/j.jmbbm.2016.08.020
11.
Sun
,
C. T.
, and
Vaidya
,
R. S.
,
1996
, “
Prediction of Composite Properties From a Representative Volume Element
,”
Compos. Sci. Technol.
,
56
(
2
), pp.
171
179
.10.1016/0266-3538(95)00141-7
12.
Lacroix
,
D.
,
Chateau
,
A.
,
Ginebra
,
M. P.
, and
Planell
,
J. A.
,
2006
, “
Micro-Finite Element Models of Bone Tissue-Engineering Scaffolds
,”
Biomaterials
,
27
(
30
), pp.
5326
5334
.10.1016/j.biomaterials.2006.06.009
13.
McIntosh
,
L.
,
Cordell
,
J. M.
, and
Wagoner Johnson
,
A. J.
,
2009
, “
Impact of Bone Geometry on Effective Properties of Bone Scaffolds
,”
Acta Biomater.
,
5
(
2
), pp.
680
692
.10.1016/j.actbio.2008.09.010
14.
Olivares
,
A. L.
,
Marsal
,
È.
,
Planell
,
J. A.
, and
Lacroix
,
D.
,
2009
, “
Finite Element Study of Scaffold Architecture Design and Culture Conditions for Tissue Engineering
,”
Biomaterials
,
30
(
30
), pp.
6142
6149
.10.1016/j.biomaterials.2009.07.041
15.
Roy
,
S.
,
Khutia
,
N.
,
Das
,
D.
,
Das
,
M.
,
Balla
,
V. K.
,
Bandyopadhyay
,
A.
, and
Chowdhury
,
A. R.
,
2016
, “
Understanding Compressive Deformation Behavior of Porous Ti Using Finite Element Analysis
,”
Mater. Sci. Eng. C
,
64
, pp.
436
443
.10.1016/j.msec.2016.03.066
16.
Zhang
,
X.
,
Tiainen
,
H.
, and
Haugen
,
H. J.
,
2019
, “
Comparison of Titanium Dioxide Scaffold With Commercial Bone Graft Materials Through Micro-Finite Element Modelling in Flow Perfusion
,”
Med. Biol. Eng. Comput.
,
57
(
1
), pp.
311
324
.10.1007/s11517-018-1884-2
17.
Dixit
,
K.
,
Gupta
,
P.
,
Kamle
,
S.
, and
Sinha
,
N.
,
2020
, “
Structural Analysis of Porous Bioactive Glass Scaffolds Using Micro-Computed Tomographic Images
,”
J. Mater. Sci.
,
55
(
27
), pp.
12705
12724
.10.1007/s10853-020-04850-w
18.
Miranda
,
P.
,
Pajares
,
A.
, and
Guiberteau
,
F.
,
2008
, “
Finite Element Modeling as a Tool for Predicting the Fracture Behavior of Robocast Scaffolds
,”
Acta Biomater.
,
4
(
6
), pp.
1715
1724
.10.1016/j.actbio.2008.05.020
19.
Sandino
,
C.
,
Planell
,
J. A.
, and
Lacroix
,
D.
,
2008
, “
A Finite Element Study of Mechanical Stimuli in Scaffolds for Bone Tissue Engineering
,”
J. Biomech.
,
41
(
5
), pp.
1005
1014
.10.1016/j.jbiomech.2007.12.011
20.
Zhang
,
X.
, and
Gong
,
H.
,
2015
, “
Simulation on Tissue Differentiations for Different Architecture Designs in Bone Tissue Engineering Scaffold Based on Cellular Structure Model
,”
J. Mech. Med. Biol.
,
15
(
3
), p.
1550028
.10.1142/S0219519415500281
21.
Marin
,
A. C.
, and
Lacroix
,
D.
,
2015
, “
The Inter-Sample Structural Variability of Regular Tissue-Engineered Scaffolds Significantly Affects the Micromechanical Local Cell Environment
,”
Interface Focus
,
5
(
2
), p.
20140097
.10.1098/rsfs.2014.0097
22.
Shi
,
C.
,
Lu
,
N.
,
Qin
,
Y.
,
Liu
,
M.
,
Li
,
H.
, and
Li
,
H.
,
2021
, “
Study on Mechanical Properties and Permeability of Elliptical Porous Scaffold Based on the SLM Manufactured Medical Ti6Al4V
,”
PLoS One
,
16
(
3
), p.
e0247764
.10.1371/journal.pone.0247764
23.
Boccaccio
,
A.
,
Uva
,
A. E.
,
Fiorentino
,
M.
,
Mori
,
G.
, and
Monno
,
G.
,
2016
, “
Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach
,”
PLoS One
,
11
(
1
), p.
e0146935
.10.1371/journal.pone.0146935
24.
Du
,
Y.
,
Liang
,
H.
,
Xie
,
D.
,
Mao
,
N.
,
Zhao
,
J.
,
Tian
,
Z.
,
Wang
,
C.
, and
Shen
,
L.
,
2019
, “
Finite Element Analysis of Mechanical Behavior, Permeability of Irregular Porous Scaffolds and Lattice-Based Porous Scaffolds
,”
Mater. Res. Exp.
,
6
(
10
), p.
105407
.10.1088/2053-1591/ab3ac1
25.
Fu
,
Q.
,
Rahaman
,
M. N.
,
Bal
,
B. S.
,
Brown
,
R. F.
, and
Day
,
D. E.
,
2008
, “
Mechanical and In Vitro Performance of 13-93 Bioactive Glass Scaffolds Prepared by a Polymer Foam Replication Technique
,”
Acta Biomater.
,
4
(
6
), pp.
1854
–18
64
.10.1016/j.actbio.2008.04.019
26.
Hyun
,
S. K.
,
Murakami
,
K.
, and
Nakajima
,
H.
,
2001
, “
Anisotropic Mechanical Properties of Porous Copper Fabricated by Unidirectional Solidification
,”
Mater. Sci. Eng. A
,
299
(
1–2
), pp.
241
248
.10.1016/S0921-5093(00)01402-7
27.
Dixit
,
K.
, and
Sinha
,
N.
,
2021
, “
Additive Manufacturing of Carbon Nanotube Reinforced Bioactive Glass Scaffolds for Bone Tissue Engineering
,”
ASME J. Eng. Sci. Med. Diagnost. Ther.
, 4(4), p. 041004.10.1115/1.4051801
28.
Hui
,
P. W.
,
Leung
,
P. C.
, and
Sher
,
A.
,
1996
, “
Fluid Conductance of Cancellous Bone Graft as a Predictor for Graft-Host Interface Healing
,”
J. Biomech.
,
29
(
1
), pp.
123
132
.10.1016/0021-9290(95)00010-0
29.
Grimm
,
J.
, and
Williams
,
J. L.
,
1997
, “
Measurements of Permeability in Human Calcaneal Trabecular Bone
,”
J. Biomech.
,
30
(
7
), pp.
743
745
.10.1016/s0021-9290(97)00016-x
30.
Nauman
,
E. A.
,
Fong
,
K. E.
, and
Keaveny
,
T. M.
,
1999
, “
Dependence of Intertrabecular Permeability on Flow Direction and Anatomic Site
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
517
524
.10.1114/1.195
31.
Kohles
,
S. S.
,
Roberts
,
J. B.
,
Upton
,
M. L.
,
Wilson
,
C. G.
,
Bonassar
,
L. J.
, and
Schlichting
,
A. L.
,
2001
, “
Direct Perfusion Measurements of Cancellous Bone Anisotropic Permeability
,”
J. Biomech.
,
34
(
9
), pp.
1197
1202
.10.1016/S0021-9290(01)00082-3
32.
Ochia
,
R. S.
, and
Ching
,
R. P.
,
2002
, “
Hydraulic Resistance and Permeability in Human Lumbar Vertebral Bodies
,”
ASME J. Biomech. Eng.
,
124
(
5
), pp.
533
537
.10.1115/1.1503793
33.
Sander
,
E. A.
,
Shimko
,
D. A.
,
Dee
,
K. C.
, and
Nauman
,
E. A.
,
2003
, “
Examination of Continuum and Micro-Structural Properties of Human Vertebral Cancellous Bone Using Combined Cellular Solid Models
,”
Biomech. Model. Mechanobiol.
,
2
(
2
), pp.
97
107
.10.1007/s10237-003-0031-6
34.
Baroud
,
G.
,
Falk
,
R.
,
Crookshank
,
M.
,
Sponagel
,
S.
, and
Steffen
,
T.
,
2004
, “
Experimental and Theoretical Investigation of Directional Permeability of Human Vertebral Cancellous Bone for Cement Infiltration
,”
J. Biomech.
,
37
(
2
), pp.
189
196
.10.1016/S0021-9290(03)00246-X
35.
Syahrom
,
A.
,
Abdul Kadir
,
M. R.
,
Abdullah
,
J.
, and
Öchsner
,
A.
,
2013
, “
Permeability Studies of Artificial and Natural Cancellous Bone Structures
,”
Med. Eng. Phys.
,
35
(
6
), pp.
792
799
.10.1016/j.medengphy.2012.08.011
36.
Syahrom
,
A.
,
Abdul Kadir
,
M. R.
,
Harun
,
M. N.
, and
Öchsner
,
A.
,
2015
, “
Permeability Study of Cancellous Bone and Its Idealised Structures
,”
Med. Eng. Phys.
,
37
(
1
), pp.
77
86
.10.1016/j.medengphy.2014.11.001
37.
Shimko
,
D. A.
,
Shimko
,
V. F.
,
Sander
,
E. A.
,
Dickson
,
K. F.
, and
Nauman
,
E. A.
,
2005
, “
Effect of Porosity on the Fluid Flow Characteristics and Mechanical Properties of Tantalum Scaffolds
,”
J. Biomed. Mater. Res. Part B Appl. Biomater.
,
73B
(
2
), pp.
315
324
.10.1002/jbm.b.30229
38.
O'Brien
,
F. J.
,
Harley
,
B. A.
,
Waller
,
M. A.
,
Yannas
,
I. V.
,
Gibson
,
L. J.
, and
Prendergast
,
P. J.
,
2006
, “
The Effect of Pore Size on Permeability and Cell Attachment in Collagen Scaffolds for Tissue Engineering
,”
Technol. Heal. Care
,
15
(
1
), pp.
3
17
.10.3233/THC-2007-15102
39.
Haddock
,
S. M.
,
Debes
,
J. C.
,
Nauman
,
E. A.
,
Fong
,
K. E.
,
Arramon
,
Y. P.
, and
Keaveny
,
T. M.
,
1999
, “
Structure-Function Relationships for Coralline Hydroxyapatite Bone Substitute
,”
J. Biomed. Mater. Res.
,
47
(
1
), pp.
71
78
.10.1002/(SICI)1097-4636(199910)47:1<71::AID-JBM10>3.0.CO;2-U
40.
Li
,
S.
,
de Wijn
,
J. R.
,
Li
,
J.
,
Layrolle
,
P.
, and
de Groot
,
K.
,
2003
, “
Macroporous Biphasic Calcium Phosphate Scaffold With High Permeability/Porosity Ratio
,”
Tissue Eng.
,
9
(
3
), pp.
535
548
.10.1089/107632703322066714
41.
Sell
,
S.
,
Barnes
,
C.
,
Simpson
,
D.
, and
Bowlin
,
G.
,
2008
, “
Scaffold Permeability as a Means to Determine Fiber Diameter and Pore Size of Electrospun Fibrinogen
,”
J. Biomed. Mater. Res. Part A
,
85A
(
1
), pp.
115
126
.10.1002/jbm.a.31556
You do not currently have access to this content.