Abstract

Surgical Haptics is an emergent field of research to integrate and advance the sense of robotic touch in laparoscopic tools in robot-assisted minimally invasive surgery. Haptic feedback from the tooltip and soft tissue surface interaction during robotic palpation can be leveraged to detect the texture and contour of subsurface geometry. However, precise force modulation of the robotic palpating probe is necessary to determine stiff inclusions of the anatomy and maneuver successive manipulation tasks during surgery. This paper focuses on investigating the layered deformations associated with different force profiles involved in manipulating the superficial anatomy of soft tissues during dynamic robotic palpation to determine the underlying anomaly. A realistic three-dimensional (3D) cross-sectional soft tissue phantom with anatomical layers and tumor, as an anomaly, is designed, modeled, and analyzed to examine the effects of oriented palpating forces (0–5 N) of a 7 DOF robot arm equipped with a contoured palpation probe. Finite element static structural analysis of oriented robotic palpation on the developed 3D soft tissue phantoms (with and without anomaly) reveals the soft tissue layer deformations and associated strains needed to identify presence of stiffer inclusions or anomaly during Robotic palpation. The finite element analysis study shows that the difference in deformations of soft tissue layers (e.g., underlying myofascial layers) under stiffer inclusions at different force levels can facilitate haptic feedback to acquire information about subsurface tumors. The deformation variations are further compared to assess better palpation orientations for subsurface anomaly detection.

References

1.
Nifong
,
L. W.
,
Chu
,
V. F.
,
Bailey
,
B. M.
,
Maziarz
,
D. M.
,
Sorrell
,
V. L.
,
Holbert
,
D.
, and
Chitwood
,
W. R.
, Jr
,
2003
, “
Robotic Mitral Valve Repair: Experience With the da Vinci System
,”
Ann. Thorac. Surg.
,
75
(
2
), pp.
438
443
.10.1016/S0003-4975(02)04554-X
2.
Guthart
,
G. S.
, and
Salisbury
,
J. K.
,
2000
, “
The IntuitiveTM Telesurgery System: Overview and Application
,”
Proceedings 2000 ICRA, Millennium Conference, IEEE International Conference on Robotics and Automation. Symposia Proceedings
(
Cat. No. 00CH37065
), Vol.
1
, San Francisco, CA, Apr. 24–28, pp.
618
621
.10.1109/ROBOT.2000.844121
3.
Jeong
,
S.
,
Chitalia
,
Y.
, and
Desai
,
J. P.
,
2020
, “
Design, Modeling, and Control of a Coaxially Aligned Steerable (Coast) Guidewire Robot
,”
IEEE Rob. Autom. Lett.
,
5
(
3
), pp.
4947
4954
.10.1109/LRA.2020.3004782
4.
Hwang
,
J.
,
Kim
,
J.-Y.
, and
Choi
,
H.
,
2020
, “
A Review of Magnetic Actuation Systems and Magnetically Actuated Guidewire- and Catheter-Based Microrobots for Vascular Interventions
,”
Intell. Serv. Rob.
,
13
(
1
), pp.
1
14
.10.1007/s11370-020-00311-0
5.
Till
,
J.
,
Aloi
,
V.
,
Riojas
,
K. E.
,
Anderson
,
P. L.
,
Webster
,
R. J.
, III
,., and
Rucker
,
C.
,
2020
, “
A Dynamic Model for Concentric Tube Robots
,”
IEEE Trans. Rob.
,
36
(
6
), pp.
1704
1718
.10.1109/TRO.2020.3000290
6.
Leonard
,
S.
,
Wu
,
K. L.
,
Kim
,
Y.
,
Krieger
,
A.
, and
Kim
,
P. C.
,
2014
, “
Smart Tissue Anastomosis Robot (STAR): A Vision-Guided Robotics System for Laparoscopic Suturing
,”
IEEE Trans. Biomed. Eng.
,
61
(
4
), pp.
1305
1317
.10.1109/TBME.2014.2302385
7.
Bhattacharjee
,
A.
,
2021
, “
A Data Requisition Treatment Instrument for Clinical Quantifiable Soft Tissue Manipulation
,”
Master's thesis
,
Purdue University Graduate School
, West Lafayette, IN.10.7912/C2/2508
8.
Bhattacharjee
,
A.
,
Chien
,
S. Y.
,
Anwar
,
S.
, and
Loghmani
,
M. T.
,
2021
, “
Quantifiable Soft Tissue Manipulation (QSTM™)–A Novel Modality to Improve Clinical Manual Therapy With Objective Metrics
,” 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (
EMBC
), Mexico, Nov. 1–5, pp.
4961
4964
.10.1109/EMBC46164.2021.9629616
9.
Bhattacharjee
,
A.
,
Loghmani
,
T.
, and
Anwar
,
S.
,
2022
, “
Finite Element Simulation and Analysis of Drop Tests to Improve the Mechanical Design of a Handheld QSTM Medical Device
,”
ASME
Paper No. IMECE2022-95786.10.1115/IMECE2022-95786
10.
Bhattacharjee
,
A.
,
Anwar
,
S.
,
Chien
,
S.
, and
Loghmani
,
M. T.
,
2023
, “
A Handheld Quantifiable Soft Tissue Manipulation Device for Tracking Real-Time Dispersive Force-Motion Patterns to Characterize Manual Therapy Treatment
,”
IEEE Trans. Biomed. Eng.
,
70
(
5
), pp.
1553
1564
.10.1109/TBME.2022.3222124
11.
Fousekis
,
K.
,
Varda
,
C.
,
Mandalidis
,
D.
,
Mylonas
,
K.
,
Angelopoulos
,
P.
,
Koumoundourou
,
D.
, and
Tsepis
,
E.
,
2020
, “
Effects of Instrument-Assisted Soft-Tissue Mobilization at Three Different Application Angles on Hamstring Surface Thermal Responses
,”
J. Phys. Ther. Sci.
,
32
(
8
), pp.
506
509
.10.1589/jpts.32.506
12.
Kim
,
J.
,
Sung
,
D. J.
, and
Lee
,
J.
,
2017
, “
Therapeutic Effectiveness of Instrument-Assisted Soft Tissue Mobilization for Soft Tissue Injury: Mechanisms and Practical Application
,”
J. Exercise Rehabil.
,
13
(
1
), pp.
12
22
.10.12965/jer.1732824.412
13.
Puangmali
,
P.
,
Liu
,
H.
,
Seneviratne
,
L. D.
,
Dasgupta
,
P.
, and
Althoefer
,
K.
,
2012
, “
Miniature 3-Axis Distal Force Sensor for Minimally Invasive Surgical Palpation
,”
IEEE/ASME Trans. Mechatron.
,
17
(
4
), pp.
646
656
.10.1109/TMECH.2011.2116033
14.
Li
,
L.
,
Yu
,
B.
,
Yang
,
C.
,
Vagdargi
,
P.
,
Srivatsan
,
R. A.
, and
Choset
,
H.
,
2017
, “
Development of an Inexpensive Tri-Axial Force Sensor for Minimally Invasive Surgery
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Vancouver, BC, Canada, Sept. 24–28, pp.
906
913
.10.1109/IROS.2017.8202253
15.
Beccani
,
M.
,
Di Natali
,
C.
,
Rentschler
,
M.
, and
Valdastri
,
P.
,
2013
, “
Uniaxial Wireless Tissue Palpation Device for Minimally Invasive Surgery
,”
ASME J. Med. Dev.
,
7
(
2
), p.
020919
.10.1115/1.4024331
16.
Liu
,
H.
,
Noonan
,
D. P.
,
Challacombe
,
B. J.
,
Dasgupta
,
P.
,
Seneviratne
,
L. D.
, and
Althoefer
,
K.
,
2010
, “
Rolling Mechanical Imaging for Tissue Abnormality Localization During Minimally Invasive Surgery
,”
IEEE Trans. Biomed. Eng.
,
57
(
2
), pp.
404
414
.10.1109/TBME.2009.2032164
17.
Sangpradit
,
K.
,
Liu
,
H.
,
Seneviratne
,
L. D.
, and
Althoefer
,
K.
,
2009
, “
Tissue Identification Using Inverse Finite Element Analysis of Rolling Indentation
,” 2009 IEEE International Conference on Robotics and Automation (
ICRA
), Kobe, Japan, May 12–17, pp.
1250
1255
.10.1109/ROBOT.2009.5152644
18.
Konstantinova
,
J.
,
Li
,
M.
,
Mehra
,
G.
,
Dasgupta
,
P.
,
Althoefer
,
K.
, and
Nanayakkara
,
T.
,
2014
, “
Behavioral Characteristics of Manual Palpation to Localize Hard Nodules in Soft Tissues
,”
IEEE Trans. Biomed. Eng.
,
61
(
6
), pp.
1651
1659
.10.1109/TBME.2013.2296877
19.
Yan
,
Y.
, and
Pan
,
J.
,
2021
, “
Fast Localization and Segmentation of Tissue Abnormalities by Autonomous Robotic Palpation
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
1707
1714
.10.1109/LRA.2021.3058870
20.
Sangpradit
,
K.
,
Liu
,
H.
,
Dasgupta
,
P.
,
Althoefer
,
K.
, and
Seneviratne
,
L. D.
,
2011
, “
Finite-Element Modeling of Soft Tissue Rolling Indentation
,”
IEEE Trans. Biomed. Eng.
,
58
(
12
), pp.
3319
3327
.10.1109/TBME.2011.2106783
21.
Ju
,
F.
,
Ye
,
H.
,
Bai
,
D.
,
Zhang
,
Y.
,
Zhu
,
C.
,
Cao
,
Y.
, and
Yue
,
W.
,
2022
, “
Autonomous Tumor Palpation and Resection Path Planning Using Tactile Array Sensor and Deep Reinforcement Learning for Surgical Robot
,” IEEE International Conference on Robotics and Biomimetics (
ROBIO
), Xishuangbanna, China, Dec. 5–9, pp.
871
876
.10.1109/ROBIO55434.2022.10012022
22.
Xiao
,
B.
,
Xu
,
W.
,
Guo
,
J.
,
Lam
,
H. K.
,
Jia
,
G.
,
Hong
,
W.
, and
Ren
,
H.
,
2020
, “
Depth Estimation of Hard Inclusions in Soft Tissue by Autonomous Robotic Palpation Using Deep Recurrent Neural Network
,”
IEEE Trans. Autom. Sci. Eng.
,
17
(
4
), pp.
1791
1799
.10.1109/TASE.2020.2978881
23.
Shafikov
,
A.
,
Tsoy
,
T.
,
Lavrenov
,
R.
,
Magid
,
E.
,
Li
,
H.
,
Maslak
,
E.
, and
Schiefermeier-Mach
,
N.
,
2020
, “
Medical Palpation Autonomous Robotic System Modeling and Simulation in Ros/Gazebo
,” 13th International Conference on Developments in eSystems Engineering (
DeSE
), Liverpool, UK, Dec. 13–17, pp.
200
205
.10.1109/DeSE51703.2020.9450784
24.
Kinova Robotics, 2023, “Gen3 Robots,” Kinova Robotics, Boisbriand, QC, Canada, accessed Apr. 30, 2023, https://www.kinovarobotics.com/product/gen3-robots#Product__resources
25.
Mayo Clinic, 2023, “Soft Tissue Sarcomea,” Mayo Clinic, Scottsdale, AZ, accessed July, 19, 2023, https://www.mayoclinic.org/diseases-conditions/soft-tissue-sarcoma/symptoms-causes/syc-20377725
26.
Al-Dirini
,
R. M.
,
Reed
,
M. P.
,
Hu
,
J.
, and
Thewlis
,
D.
,
2016
, “
Development and Validation of a High Anatomical Fidelity FE Model for the Buttock and Thigh of a Seated Individual
,”
Ann. Biomed. Eng.
,
44
(
9
), pp.
2805
2816
.10.1007/s10439-016-1560-3
27.
Hulst Jepsen Physical Therapy, 2023, “Myofascial Release + How It Can Help You,” Hulst Jepsen Physical Therapy, Grand Rapids, MI, accessed Aug. 2,
2023
, https://www.hjphysicaltherapy.com/myofascial-release-how-it-can-help-you/
28.
Chen
,
C.
,
Cheng
,
Y.
,
Zhu
,
X.
,
Cai
,
Y.
,
Xue
,
Y.
,
Kong
,
N.
,
Yu
,
Y.
, et al.,
2020
, “
Ultrasound Assessment of Skin Thickness and Stiffness: The Correlation With Histology and Clinical Score in Systemic Sclerosis
,”
Arthritis Res. Therapy
,
22
(
1
), pp.
1
8
.10.1186/s13075-020-02285-x
29.
Diegelmann
,
R. F.
, and
Evans
,
M. C.
,
2004
, “
Wound Healing: An Overview of Acute, Fibrotic and Delayed Healing
,”
Front. Biosci.
,
9
(
1–3
), pp.
283
289
.10.2741/1184
30.
Standring
,
S.
(Ed.).,
2021
,
Gray's Anatomy e-Book: The Anatomical Basis of Clinical Practice
,
Elsevier Health Sciences
, Amsterdam, The Netherlands.
31.
Becker
,
I.
,
Baxter
,
G. D.
, and
Woodley
,
S. J.
,
2010
, “
The Vastus Lateralis Muscle: An Anatomical Investigation
,”
Clinical Anatomy
,
23
(
5
), pp.
575
585
.10.1002/ca.20974
32.
Akhtar
,
R.
,
Sherratt
,
M. J.
,
Cruickshank
,
J. K.
, and
Derby
,
B.
,
2011
, “
Characterizing the Elastic Properties of Tissues
,”
Mater. Today
,
14
(
3
), pp.
96
105
.10.1016/S1369-7021(11)70059-1
33.
Arnold
,
N.
,
Scott
,
J.
, and
Bush
,
T. R.
,
2023
, “
A Review of the Characterizations of Soft Tissues Used in Human Body Modeling: Scope, Limitations, and the Path Forward
,”
J. Tissue Viability
,
32
(
2
), pp.
286
304
.10.1016/j.jtv.2023.02.003
34.
Shiotani
,
H.
,
Yamashita
,
R.
,
Mizokuchi
,
T.
,
Naito
,
M.
, and
Kawakami
,
Y.
,
2019
, “
Site-and Sex-Differences in Morphological and Mechanical Properties of the Plantar Fascia: A Supersonic Shear Imaging Study
,”
ASME J. Biomech.
,
85
, pp.
198
203
.10.1016/j.jbiomech.2019.01.014
35.
Liang
,
X.
, and
Boppart
,
S. A.
,
2010
, “
Biomechanical Properties of In Vivo Human Skin From Dynamic Optical Coherence Elastography
,”
IEEE Trans. Biomed. Eng.
,
57
(
4
), pp.
953
959
.10.1109/TBME.2009.2033464
36.
Joodaki
,
H.
, and
Panzer
,
M. B.
,
2018
, “
Skin Mechanical Properties and Modeling: A Review
,”
Proc. Inst. Mech. Eng., Part H
,
232
(
4
), pp.
323
343
.10.1177/0954411918759801
37.
Luebberding
,
S.
,
Krueger
,
N.
, and
Kerscher
,
M.
,
2014
, “
Mechanical Properties of Human Skin In Vivo: A Comparative Evaluation in 300 Men and Women
,”
Skin Res. Technol.
,
20
(
2
), pp.
127
135
.10.1111/srt.12094
38.
Alkhouli
,
N.
,
Mansfield
,
J.
,
Green
,
E.
,
Bell
,
J.
,
Knight
,
B.
,
Liversedge
,
N.
,
Tham
,
J. C.
,
Welbourn
,
R.
,
Shore
,
A. C.
,
Kos
,
K.
, and
Winlove
,
C. P.
,
2013
, “
The Mechanical Properties of Human Adipose Tissues and Their Relationships to the Structure and Composition of the Extracellular Matrix
,”
Am. J. Physiol.-Endocrinol. Metab.
,
305
(
12
), pp.
E1427
E1435
.10.1152/ajpendo.00111.2013
39.
Li
,
T.
,
Pan
,
A.
, and
Ren
,
H.
,
2021
, “
Reaction Force Mapping by 3-Axis Tactile Sensing With Arbitrary Angles for Tissue Hard-Inclusion Localization
,”
IEEE Trans. Biomed. Eng.
,
68
(
1
), pp.
26
35
.10.1109/TBME.2020.2991209
You do not currently have access to this content.