Abstract

The elastography method has been widely used to estimate the stiffness of biomaterials based on the shear wave speed. The wave propagation excited by a single indent on the surface of the biomaterials is not always an ideal shear wave. The distance from the interested region to the indent or different algorithms for elastography may affect the calculation of stiffness. This paper aims to analyze the shear wave propagation in soft biomaterials using a finite element model. A finite element model was constructed based on the setup of our previous in vitro experiments on the elastography of gelatin. Briefly, a shear wave propagation was induced by a single indent with a frequency of 1 kHz. Following simulation, the displacements along a path line, at three depths, were extracted for analyzing the shear wave propagation. The influence of the damping behavior and three different elastography algorithms were investigated. Results have shown that finite element simulation agreed well with the previous in vitro experiments. The estimated stiffness increased by more than 10% as the depth increased from 1 mm to 7 mm. This increase was even larger for the material with a larger damping behavior (viscoelasticity). The precise estimation was related to the distance between the interested region and the indent for the material with a larger damping behavior after the distance of 4 mm. The feasibility of three algorithms, i.e., wavefront slope, cross-correlation algorithm, and finite differencing method (FDM), were investigated. The FDM proposed in this work can determine the shear wave speed based on local spatial and temporal data, while it demands high-frequency data. The understanding from this work may provide valuable information for optimizing the performance of elastography.

References

1.
Frulio
,
N.
, and
Trillaud
,
H.
,
2013
, “
Ultrasound Elastography in Liver
,”
Diagn. Interventional Imaging
,
94
(
5
), pp.
515
534
.10.1016/j.diii.2013.02.005
2.
Murphy
,
M. C.
,
Huston
,
J.
, and
Ehman
,
R. L.
,
2019
, “
MR Elastography of the Brain and Its Application in Neurological Diseases
,”
NeuroImage
,
187
, pp.
176
183
.10.1016/j.neuroimage.2017.10.008
3.
Imtiaz
,
S.
,
2018
, “
Breast Elastography: A New Paradigm in Diagnostic Breast Imaging
,”
Appl. Radiol.
,
47
(
3
), pp.
14
19
.10.37549/AR2467
4.
Huang
,
L.
,
Ma
,
M.
,
Du
,
Z.
,
Liu
,
Z.
, and
Gong
,
X.
,
2019
, “
Quantitative Evaluation of Tissue Stiffness Around Lesion by Sound Touch Elastography in the Diagnosis of Benign and Malignant Breast Lesions
,”
PLoS ONE
,
14
(
7
), p.
e0219943
.10.1371/journal.pone.0219943
5.
Gennisson
,
J.-L.
,
Deffieux
,
T.
,
Fink
,
M.
, and
Tanter
,
M.
,
2013
, “
Ultrasound Elastography: Principles and Techniques
,”
Diagn. Interventional Imaging
,
94
(
5
), pp.
487
495
.10.1016/j.diii.2013.01.022
6.
Sigrist
,
R. M. S.
,
Liau
,
J.
,
Kaffas
,
A. E.
,
Chammas
,
M. C.
, and
Willmann
,
J. K.
,
2017
, “
Ultrasound Elastography: Review of Techniques and Clinical Applications
,”
Theranostics
,
7
(
5
), pp.
1303
1329
.10.7150/thno.18650
7.
Li
,
R.
,
Qian
,
X.
,
Gong
,
C.
,
Zhang
,
J.
,
Liu
,
Y.
,
Xu
,
B.
,
Humayun
,
M. S.
, and
Zhou
,
Q.
,
2023
, “
Simultaneous Assessment of the Whole Eye Biomechanics Using Ultrasonic Elastography
,”
IEEE Trans. Biomed. Eng.
,
70
(
4
), pp.
1310
1317
.10.1109/TBME.2022.3215498
8.
Valera-Calero
,
J. A.
,
Fernández-de-las-Peñas
,
C.
,
Fernández-Rodríguez
,
T.
,
Arias-Buría
,
J. L.
,
Varol
,
U.
, and
Gallego-Sendarrubias
,
G. M.
,
2021
, “
Influence of Examiners' Experience and Region of Interest Location on Semiquantitative Elastography Validity and Reliability
,”
Appl. Sci.
,
11
(
19
), p.
9247
.10.3390/app11199247
9.
Bilasse
,
M.
,
Chatelin
,
S.
,
Altmeyer
,
G.
,
Marouf
,
A.
,
Vappou
,
J.
, and
Charpentier
,
I.
,
2018
, “
A 2D Finite Element Model for Shear Wave Propagation in Biological Soft Tissues: Application to Magnetic Resonance Elastography
,”
Int. J. Numer. Meth. Biomed. Eng.
,
34
(
8
), p.
e3102
.10.1002/cnm.3102
10.
Baldewsing
,
R. A.
,
de Korte
,
C. L.
,
Schaar
,
J. A.
,
Mastik
,
F.
, and
van der Steen
,
A. F. W.
,
2004
, “
Finite Element Modeling and Intravascular Ultrasound Elastography of Vulnerable Plaques: Parameter Variation
,”
Ultrasonics
,
42
(
1–9
), pp.
723
729
.10.1016/j.ultras.2003.11.017
11.
McGarry
,
M.
,
Houten
,
E. V.
,
Guertler
,
C.
,
Okamoto
,
R.
,
Smith
,
D.
,
Sowinski
,
D.
,
Johnson
,
C.
,
Bayly
,
P.
,
Weaver
,
J.
, and
Paulsen
,
K.
,
2021
, “
A Heterogenous, Time Harmonic, Nearly Incompressible Transverse Isotropic Finite Element Brain Simulation Platform for MR Elastography
,”
Phys. Med. Biol.
,
66
(
5
), p.
055029
.10.1088/1361-6560/ab9a84
12.
Li
,
R.
,
Du
,
Z.
,
Qian
,
X.
,
Li
,
Y.
,
Martinez-Camarillo
,
J.-C.
,
Jiang
,
L.
,
Humayun
,
M. S.
,
Chen
,
Z.
, and
Zhou
,
Q.
,
2020
, “
High Resolution Optical Coherence Elastography of Retina Under Prosthetic Electrode
,”
Quant. Imaging Med. Surg.
,
11
(
3
), pp.
918
927
.10.21037/qims-20-1137
13.
Mirzaei
,
M.
,
Asif
,
A.
,
Fortin
,
M.
, and
Rivaz
,
H.
,
2020
, “
3D Normalized Cross-Correlation for Estimation of the Displacement Field in Ultrasound Elastography
,”
Ultrasonics
,
102
, p.
106053
.10.1016/j.ultras.2019.106053
14.
Varghese
,
T.
,
Konofagou
,
E. E.
,
Ophir
,
J.
,
Alam
,
S. K.
, and
Bilgen
,
M.
,
2000
, “
Direct Strain Estimation in Elastography Using Spectral Cross-Correlation
,”
Ultrasound Med. Biol.
,
26
(
9
), pp.
1525
1537
.10.1016/S0301-5629(00)00316-1
15.
Thomas
,
J. W.
,
1995
, “
Hyperbolic Equations
,”
Numerical Partial Differential Equations: Finite Difference Methods
,
Springer
,
New York,
pp.
205
259
.
16.
Wang
,
C.-Z.
,
Zheng
,
J.
,
Huang
,
Z.-P.
,
Xiao
,
Y.
,
Song
,
D.
,
Zeng
,
J.
,
Zheng
,
H.-R.
, and
Zheng
,
R.-Q.
,
2014
, “
Influence of Measurement Depth on the Stiffness Assessment of Healthy Liver With Real-Time Shear Wave Elastography
,”
Ultrasound Med. Biol.
,
40
(
3
), pp.
461
469
.10.1016/j.ultrasmedbio.2013.10.021
17.
Liu
,
C.
,
Tang
,
J.
,
Yu
,
K.
,
Liao
,
B.
,
Hu
,
R.
, and
Zang
,
X.
,
2020
, “
On the Characteristics of a Quasi-Zero-Stiffness Vibration Isolator With Viscoelastic Damper
,”
Appl. Math. Modell.
,
88
, pp.
367
381
.10.1016/j.apm.2020.06.068
18.
Ibrahim
,
R. A.
,
2008
, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
,
314
(
3–5
), pp.
371
452
.10.1016/j.jsv.2008.01.014
You do not currently have access to this content.