Abstract

Fracture may occur in human lower leg bones considering varying loads acting on them while performing various functions. Implants, commonly used in healing the fractures, must be properly aligned with the bones' anatomical axes for their proper functioning. While attempts to establish tibial anatomical axis have been made previously, combined central anatomical axis of human tibia and fibula remains unexplored. In this study, profiles of individual and combined central anatomical axes of tibia and fibula have been obtained using computed tomography (CT). These profiles are found to be approximately straight with the deviation from straight line for the centroidal axis of the combined system being approximately half of that for the tibia. It is further utilized in assessing the role of fibula in determining the critical stresses in the tibia with the help of static finite element analysis (FEA) of a tibia–fibula model. Even though fibula takes a smaller proportion of the total axial load, its absence increases the compressive stresses in the tibia due to increased bending moments at the critical cross section. Furthermore, FEA has been carried out to understand the clinical significance of the mismatch in the centroidal axis of an implant and its parent bone taking the example of the human tibia alone. FEA suggests that these central anatomical axes are in fact the load bearing axes of the bones and any misalignment of implant with the central anatomical axis may lead to patient discomfort and premature failure of the implant.

References

1.
Liu
,
H.
, and
Webster
,
T. J.
,
2007
, “
Bioinspired Nanocomposites for Orthopedic Applications
,”
Nanotechnology for the Regeneration of Hard and Soft Tissues
, pp.
1
52
.10.1142/6421
2.
Lacroix
,
D.
, and
Planell
,
J. A.
,
2009
, “
Biomaterials: Processing, Characterization, and Applications
,”
Biomedical Materials
, Springer, New York, pp.
261
292
.
3.
Sharir
,
A.
,
Stern
,
T.
,
Rot
,
C.
,
Shahar
,
R.
, and
Zelzer
,
E.
,
2011
, “
Muscle Force Regulates Bone Shaping for Optimal Load-Bearing Capacity During Embryogenesis
,”
Development
,
138
(
15
), pp.
3247
3259
.10.1242/dev.063768
4.
Foster
,
C.
, and
Armstrong
,
M. E. G.
,
2018
, “
What Types of Physical Activities Are Effective in Developing Muscle and Bone Strength and Balance
,”
J. Frailty, Sarcopenia Falls
,
3
(
2
), pp.
58
65
.10.22540/JFSF-03-058
5.
Arden
,
N. K.
, and
Spector
,
T. D.
,
1997
, “
Genetic Influences on Muscle Strength, Lean Body Mass, and Bone Mineral Density: A Twin Study
,”
J. Bone Miner. Res.
,
12
(
12
), pp.
2076
2081
.10.1359/jbmr.1997.12.12.2076
6.
Ehrlich
,
P. J.
, and
Lanyon
,
L. E.
,
2002
, “
Mechanical Strain and Bone Cell Function: A Review
,”
Osteoporosis Int.
,
13
(
9
), pp.
688
700
.10.1007/s001980200095
7.
Turner
,
C. H.
,
1998
, “
Three Rules for Bone Adaptation to Mechanical Stimuli
,”
Bone
,
23
(
5
), pp.
399
407
.10.1016/S8756-3282(98)00118-5
8.
Avin
,
K. G.
,
Bloomfield
,
S. A.
,
Gross
,
T. S.
, and
Warden
,
S. J.
,
2015
, “
Biomechanical Aspects of the Muscle-Bone Interaction
,”
Curr. Osteoporosis Rep.
,
13
(
1
), pp.
1
8
.10.1007/s11914-014-0244-x
9.
Judex
,
S.
, and
Carlson
,
K. J.
,
2009
, “
Is Bone's Response to Mechanical Signals Dominated by Gravitational Loading
,”
Med. Sci. Sports Exercise
,
41
(
11
), pp.
2037
2043
.10.1249/MSS.0b013e3181a8c6e5
10.
Mcelhaney
,
H.
, and
Virginia
,
W.
,
1966
, “
Dynamic Response of Bone and Muscle Tissue
,”
J. Appl. Physiol.
,
21
(
4
), pp.
1231
1236
.10.1152/jappl.1966.21.4.1231
11.
Robling
,
A. G.
,
2009
, “
Is Bone's Response to Mechanical Signals Dominated by Muscle Forces?
,”
Med. Sci. Sports Exercise
,
41
(
11
), pp.
2044
2049
.10.1249/MSS.0b013e3181a8c702
12.
Zymbal
,
V. E. R. A.
,
Baptista
,
F.
,
Letuchy
,
E. M.
,
Janz
,
K. F.
, and
Levy
,
S. M.
,
2019
, “
Mediating Effect of Muscle on the Relationship of Physical Activity and Bone
,”
Med. Sci. Sports Exercise
,
51
(
1
), pp.
202
210
.10.1249/MSS.0000000000001759
13.
Skerry
,
T. M.
,
2008
, “
The Response of Bone to Mechanical Loading and Disuse: Fundamental Principles and Influences on Osteoblast/Osteocyte Homeostasis
,”
Arch. Biochem. Biophys.
,
473
(
2
), pp.
117
123
.10.1016/j.abb.2008.02.028
14.
Gosman
,
J. H.
,
Hubbell
,
Z. R.
,
Shaw
,
C. N.
, and
Ryan
,
T. M.
,
2013
, “
Development of Cortical Bone Geometry in the Human Femoral and Tibial Diaphysis
,”
Anat. Rec.
,
296
(
5
), pp.
774
787
.10.1002/ar.22688
15.
Barua
,
E.
,
Das
,
S.
, and
Deoghare
,
A. B.
,
2018
, “
Development of Computational Tibia Model to Investigate Stress Shielding Effect at Healing Stages
,”
Mater. Today Proc.
,
5
(
5
), pp.
13267
13275
.10.1016/j.matpr.2018.02.318
16.
Kimura
,
T.
,
1971
, “
Cross-Section of Human Lower Leg Bones Viewed From Strength of Materials
,”
J. Anthropol. Soc. Nippon
,
79
(
4
), pp.
323
336
.10.1537/ase1911.79.323
17.
Minns
,
R. J.
,
Bremble
,
G. R.
, and
Campbell
,
J.
,
1975
, “
The Geometrical Properties of the Human Tibia
,”
J. Biomech.
,
8
(
3–4
), pp.
253
255
.10.1016/0021-9290(75)90032-9
18.
Martens
,
M.
,
Van Audekercke
,
R.
,
De Meester
,
P.
, and
Mulier
,
J. C.
,
1981
, “
The Geometrical Properties of Human Femur and Tibia and Their Importance for the Mechanical Behaviour of These Bone Structures
,”
Arch. Orthop. Trauma. Surg.
,
98
(
2
), pp.
113
120
.10.1007/BF00460798
19.
Gutkowski
,
L. M.
,
Raftopoulos
,
D. D.
, and
Williams
,
G.
,
1995
, “
Computer Techniques for In Vivo Determination of Geometric Properties of Human Femur and Tibia
,”
Med. Biol. Eng. Comput.
,
33
(
3
), pp.
341
347
.10.1007/BF02510511
20.
McNeil
,
C. J.
,
Raymer
,
G. H.
,
Doherty
,
T. J.
,
Marsh
,
G. D.
, and
Rice
,
C. L.
,
2009
, “
Geometry of a Weight-Bearing and Non-Weight-Bearing Bone in the Legs of Young, Old, and Very Old Men
,”
Calcif. Tissue Int.
,
85
(
1
), pp.
22
30
.10.1007/s00223-009-9261-7
21.
Fitzpatrick
,
C.
,
FitzPatrick
,
D.
,
Auger
,
D.
, and
Lee
,
J.
,
2007
, “
A Tibial-Based Coordinate System for Three-Dimensional Data
,”
Knee
,
14
(
2
), pp.
133
137
.10.1016/j.knee.2006.11.001
22.
Fitzpatrick
,
C.
,
Fitzpatrick
,
D.
,
Lee
,
J.
, and
Auger
,
D.
,
2007
, “
Statistical Design of Unicompartmental Tibial Implants and Comparison With Current Devices
,”
Knee
,
14
(
2
), pp.
138
144
.10.1016/j.knee.2006.11.005
23.
Ide
,
Y.
,
Matsunaga
,
S.
,
Harris
,
J.
,
O'Connell
,
D.
,
Seikaly
,
H.
, and
Wolfaardt
,
J.
,
2015
, “
Anatomical Examination of the Fibula: Digital Imaging Study for Osseointegrated Implant Installation
,”
J. Otolaryngol. - Head Neck Surg.
,
44
(
1
), pp.
1
8
.10.1186/s40463-015-0055-9
24.
Hicks
,
C. A.
,
Noble
,
P.
, and
Tullos
,
H.
,
1995
, “
The Anatomy of the Tibial Intramedullary Canal
,”
Clin. Orthop. Relat. Res.
, 321, pp.
111
116
.https://pubmed.ncbi.nlm.nih.gov/7497655/#:~:text=Based%20on%20these%20sections%2C%20the,tibia%20from%20the%20medial%20cortex.
25.
Cobb
,
J. P.
,
Dixon
,
H.
,
Dandachli
,
W.
, and
Iranpour
,
F.
,
2008
, “
The Anatomical Tibial Axis: Reliable Rotational Orientation in Knee Replacement
,”
J. Bone Jt. Surg. Br.
,
90-B
(
8
), pp.
1032
1038
.10.1302/0301-620X.90B8.19905
26.
Song
,
S. J.
, and
Jeong
,
B. O.
,
2010
, “
Three-Dimensional Analysis of the Intramedullary Canal Axis of Tibia: Clinical Relevance to Tibia Intramedullary Nailing
,”
Arch. Orthop. Trauma. Surg.
,
130
(
7
), pp.
903
907
.10.1007/s00402-009-0992-8
27.
Kwak
,
D.-S.
,
Han
,
C. W.
, and
Han
,
S.-H.
,
2010
, “
Tibial Intramedullary Canal Axis and Its Influence on the Intramedullary Alignment System Entry Point in Koreans
,”
Anat. Cell Biol.
,
43
(
3
), pp.
260
–26
7
.10.5115/acb.2010.43.3.260
28.
Van Cauter
,
S.
,
De Beule
,
M.
,
Van Haver
,
A.
,
V
,
P.
, and
V
,
B.
,
2012
, “
Automated Extraction of the Femoral Anatomical Axis for Determining the Intramedullary Rod Parameters in Total Knee Arthroplasty
,”
Int. J. Numer. Methods Biomed. Eng.
,
28
(
1
), pp.
158
169
.10.1002/cnm.1478
29.
Luo
,
C. F.
,
2004
, “
Reference Axes for Reconstruction of the Knee
,”
Knee
,
11
(
4
), pp.
251
257
.10.1016/j.knee.2004.03.003
30.
Cherian
,
J. J.
,
Kapadia
,
B. H.
,
Banerjee
,
S.
,
Jauregui
,
J. J.
,
Issa
,
K.
, and
Mont
,
M. A.
,
2014
, “
Mechanical, Anatomical, and Kinematic Axis in TKA: Concepts and Practical Applications
,”
Curr. Rev. Musculoskeletal Med.
,
7
(
2
), pp.
89
95
.10.1007/s12178-014-9218-y
31.
Karade
,
V.
, and
Ravi
,
B.
,
2014
, “
Analysis on Anatomical References to Assess the Coronal Alignment of Tibial and Femoral Cuts in Mega Prosthetic Knee Replacement
,”
J. Orthop. Traumatol.
,
15
(
2
), pp.
87
93
.10.1007/s10195-013-0277-4
32.
Lambert
,
K. L.
,
1971
, “
The Weight-Bearing Function of the Fibula a Strain Gauge Study
,”
J. Bone Jt. Surg.
,
53
(
3
), pp.
507
513
.https://journals.lww.com/jbjsjournal/citation/1971/53030/the_weight_bearing_function_of_the_fibula__a.7.aspx
33.
Takebe
,
K.
,
Nakagawa
,
A.
,
Minami
,
H.
,
Kanazawa
,
H.
, and
Hirohata
,
K.
,
1984
, “
Role of the Fibula in Weight-Bearing
,”
Clin. Orthop. Relat. Res.
,
184
, pp.
289
–2
92
.https://pubmed.ncbi.nlm.nih.gov/6705357/
34.
Goh
,
J. C.
,
Mech
,
A. M.
,
Lee
,
E. H.
,
Ang
,
E. J.
,
Bayon
,
P.
, and
Pho
,
R. W.
,
1992
, “
Biomechanical Study on the Load-Bearing Characteristics of the Fibula and the Effects of Fibular Resection
,”
Clin. Orthop. Relat. Res.
,
279
, pp.
223
228
.https://journals.lww.com/clinorthop/abstract/1992/06000/biomechanical_study_on_the_load_%20bearing.28.aspx
35.
Funk
,
J. R.
,
Rudd
,
R. W.
,
Kerrigan
,
J. R.
, and
Crandall
,
J. R.
,
2007
, “
The Line of Action in the Tibia During Axial Compression of the Leg
,”
J. Biomech.
,
40
(
10
), pp.
2277
2282
.10.1016/j.jbiomech.2006.10.012
36.
Viceconti
,
M.
,
Zannoni
,
C.
, and
Pierotti
,
L.
,
1998
, “
TRI2SOLID: An Application of Reverse Engineering Methods to the Creation of CAD Models of Bone Segments
,”
Comput. Methods Programs Biomed.
,
56
(
3
), pp.
211
220
.10.1016/S0169-2607(98)00011-X
37.
Starly
,
B.
,
Fang
,
Z.
,
Sun
,
W.
,
Shokoufandeh
,
A.
, and
Regli
,
W.
,
2005
, “
Three-Dimensional Reconstruction for Medical-CAD Modeling
,”
Comput. Aided Des. Appl.
,
2
(
1–4
), pp.
431
438
.10.1080/16864360.2005.10738392
38.
Stojkovic
,
M.
, and
Trajanovic
,
M.
,
2009
,
Referential Geometrical Entities for Reverse Modeling of Geometry of Femur
, Porto, Portugal, pp.
189
194
.http://icit.masfak.ni.ac.rs/uploads/articles/icit2_vip2009.pdf
39.
Stojkovic
,
M.
,
Milovanovic
,
J.
,
Vitkovic
,
N.
,
Trajanovic
,
M.
,
Grujovic
,
N.
,
Milivojevic
,
V.
,
Milisavljevic
,
S.
, and
Mrvic
,
S.
,
2010
, “
Reverse Modeling and Solid Free-Form Fabrication of Sternum Implant
,”
Australas. Phys. Eng. Sci. Med.
,
33
(
3
), pp.
243
250
.10.1007/s13246-010-0029-1
40.
Lanman
,
D.
,
Wachs
,
M.
,
Taubin
,
G.
, and
Cukierman
,
F.
,
2006
, “
Reconstructing a 3D Line From a Single Catadioptric Image
,” Third International Symposium on 3D Data Processing, Visualization, and Transmission (
3DPVT
), Chapel Hill, NC, June 14–16, pp.
89
96
.10.1109/3DPVT.2006.115
41.
Tiwari
,
A.
,
Wahi
,
P.
, and
Sinha
,
N.
,
2019
, “
Finite Element Analysis of Human Tibia Modeled as a Functionally Graded Material
,”
ASME J. Eng. Sci. Med. Diagn. Ther.
,
2
(
3
), p.
031007
.10.1115/1.4044054
42.
Morrison
,
J. B.
,
1970
, “
The Mechanics of the Knee Joint in Relation to Normal Walking
,”
J. Biomech.
,
3
(
1
), pp.
51
61
.10.1016/0021-9290(70)90050-3
43.
Duda
,
G. N.
,
Mandruzzato
,
F.
,
Heller
,
M.
,
Goldhahn
,
J.
,
Moser
,
R.
,
Hehli
,
M.
,
Claes
,
L.
, and
Haas
,
N. P.
,
2001
, “
Mechanical Boundary Conditions of Fracture Healing: Borderline Indications in the Treatment of Unreamed Tibial Nailing
,”
J. Biomech.
,
34
(
5
), pp.
639
650
.10.1016/S0021-9290(00)00237-2
44.
Ün
,
K.
, and
Çalık
,
A.
,
2016
, “
Relevance of Inhomogeneous—Anisotropic Models of Human Cortical Bone: A Tibia Study Using the Finite Element Method
,”
Biotechnol. Biotechnol. Equip.
,
30
(
3
), pp.
538
547
.10.1080/13102818.2016.1154803
45.
Harrington
,
I. J.
,
1976
, “
A Bioengineering Analysis of Force Actions at the Knee in Normal and Pathological Gait
,”
J. Biomech. Eng.
,
11
(
5
), pp.
167
172
.https://pubmed.ncbi.nlm.nih.gov/1276337/
46.
Gefen
,
A.
,
2003
, “
Consequences of Imbalanced Joint-Muscle Loading of the Femur and Tibia: From Bone Cracking to Bone Loss
,”
Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Cancun, Mexico, Sept. 17–21, pp.
1827
1830
.10.1109/IEMBS.2003.1279772
You do not currently have access to this content.