Abstract

Breast cancer is a global problem, and it is inevitable to detect cancerous cells at early stages. In recent years, microwave imaging (MWI) technology has been widely applied in biomedical applications for its nonionizing radiation. Therefore, in this paper, a low profile hexagonal microstrip patch antenna has been proposed for the technology to detect breast cancer. This antenna has wide operating bandwidth of 13.5 GHz (6.6 GHz to 20.1 GHz), and the return loss is as low as −50.83 dB at 8 GHz. To evaluate the antenna performances, the proposed antenna has been simulated in two different simulation software like HFSS and CST MWS. The antenna has achieved a maximum gain of 8.82 dBi with a quasi-omnidirectional radiation pattern. A three-layered human body mimicking breast phantom with different dielectric properties has been designed with and without tumor mimicking tissue. The difference between the dielectric properties of the tumor and the dielectric properties of different layers of breast phantom in the presence of external radiation field can inform the existence of tumor inside the breast phantom. An array of eight elements of proposed antenna is distributed around the breast phantom to detect the tumor with a minimum radius of 2 mm. Because of the low profile and compact in size (7.9mm×11.4mm), the proposed antenna is suitable for multistatic MWI technology for breast cancer detection at early stage.

References

1.
Sung
,
H.
,
Ferlay
,
J.
,
Siegel
,
R. L.
,
Laversanne
,
M.
,
Soerjomataram
,
I.
,
Jemal
,
A.
, and
Bray
,
F.
,
2021
, “
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries
,”
CA Cancer J. Clin.
,
71
(
3
), pp.
209
249
.10.3322/caac.21660
2.
Jaglan
,
P.
,
Dass
,
R.
, and
Duhan
,
M.
,
2019
, “
Breast Cancer Detection Techniques: Issues and Challenges
,”
J. Inst. Eng. (India): Ser. B
,
100
(
4
), pp.
379
386
.10.1007/s40031-019-00391-2
3.
Miller
,
K. D.
,
Camp
,
M.
, and
Steligo
,
K.
,
2021
,
The Breast Cancer Book: A Trusted Guide for You and Your Loved Ones
,
Johns Hopkins University Press
,
Baltimore, MD
.
4.
Zeeshan
,
M.
,
Salam
,
B.
,
Khalid
,
Q. S. B.
,
Alam
,
S.
, and
Sayani
,
R.
,
2018
, “
Diagnostic Accuracy of Digital Mammography in the Detection of Breast Cancer
,”
Cureus
,
10
(
4
), p.
e2448
.10.7759/cureus.2448
5.
Sood
,
R.
,
Rositch
,
A. F.
,
Shakoor
,
D.
,
Ambinder
,
E.
,
Pool
,
K.-L.
,
Pollack
,
E.
,
Mollura
,
D. J.
,
Mullen
,
L. A.
, and
Harvey
,
S. C.
,
2019
, “
Ultrasound for Breast Cancer Detection Globally: A Systematic Review and Meta-Analysis
,”
J. Global Oncol.
,
5
, pp.
1
17
.10.1200/JGO.19.00127
6.
Yang
,
S. K.
,
Cho
,
N.
, and
Moon
,
W. K.
,
2007
, “
The Role of PET/CT for Evaluating Breast Cancer
,”
Korean J. Radiol.
,
8
(
5
), pp.
429
437
.10.3348/kjr.2007.8.5.429
7.
Avril
,
N.
,
Rosé
,
C. A.
,
Schelling
,
M.
,
Dose
,
J.
,
Kuhn
,
W.
,
Bense
,
S.
,
Weber
,
W.
,
Ziegler
,
S.
,
Graeff
,
H.
, and
Schwaiger
,
M.
,
2000
, “
Breast Imaging With Positron Emission Tomography and Fluorine-18 Fluorodeoxyglucose: Use and Limitations
,”
J. Clin. Oncol.
,
18
(
20
), pp.
3495
3502
.10.1200/JCO.2000.18.20.3495
8.
Desperito
,
E.
,
Schwartz
,
L.
,
Capaccione
,
K. M.
,
Collins
,
B. T.
,
Jamabawalikar
,
S.
,
Peng
,
B.
,
Patrizio
,
R.
, and
Salvatore
,
M. M.
,
2022
, “
Chest CT for Breast Cancer Diagnosis
,”
Life
,
12
(
11
), p.
1699
.10.3390/life12111699
9.
Berg
,
W. A.
,
Gutierrez
,
L.
,
NessAiver
,
M. S.
,
Carter
,
W. B.
,
Bhargavan
,
M.
,
Lewis
,
R. S.
, and
Ioffe
,
O. B.
,
2004
, “
Diagnostic Accuracy of Mammography, Clinical Examination, US, and MR Imaging in Preoperative Assessment of Breast Cancer
,”
Radiology
,
233
(
3
), pp.
830
849
.10.1148/radiol.2333031484
10.
Ahmed
,
S. S.
,
Mahdi
,
J. F.
, and
Kadhim
,
M. A.
,
2020
, “
Design of Ultra-Wideband Microwave Antenna Array for Detection Breast Cancer Tumours
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
881
(
1
), p.
012112
.10.1088/1757-899X/881/1/012112
11.
Balanis
,
C. A.
,
2016
,
Antenna Theory: Analysis and Design
,
Wiley
,
Hoboken, NJ
.
12.
Cheng
,
Y.
, and
Fu
,
M.
,
2018
, “
Dielectric Properties for Non-Invasive Detection of Normal, Benign, and Malignant Breast Tissues Using Microwave Theories: Microwave Properties of Breast Tissues
,”
Thorac. Cancer
,
9
(
4
), pp.
459
465
.10.1111/1759-7714.12605
13.
O'Loughlin
,
D.
,
Elahi
,
M. A.
,
Porter
,
E.
,
Shahzad
,
A.
,
Oliveira
,
B. L.
,
Glavin
,
M.
,
Jones
,
E.
, and
O'Halloran
,
M.
,
2018
, “
Open-Source Software for Microwave Radar-Based Image Reconstruction
,” Proceedings of the
12th European Conference on Antennas and Propagation (EuCAP 2018)
, London, UK, Apr. 9–13, p.
408
.10.1049/cp.2018.0767
14.
Bhargava
,
D.
, and
Rattanadecho
,
P.
,
2022
, “
Microwave Imaging of Breast Cancer: Simulation Analysis of SAR and Temperature in Tumors for Different Age and Type
,”
Case Stud. Therm. Eng.
,
31
, p.
101843
.10.1016/j.csite.2022.101843
15.
Qashlan
,
A. M.
,
Aldhaheri
,
R. W.
, and
Alharbi
,
K. H.
,
2022
, “
A Modified Compact Flexible Vivaldi Antenna Array Design for Microwave Breast Cancer Detection
,”
Appl. Sci.
,
12
(
10
), p.
4908
.10.3390/app12104908
16.
Çalışkan
,
R.
,
Gültekin
,
S. S.
,
Uzer
,
D.
, and
Dündar
,
Ö.
,
2015
, “
A Microstrip Patch Antenna Design for Breast Cancer Detection
,”
Procedia-Soc. Behav. Sci.
,
195
, pp.
2905
2911
.10.1016/j.sbspro.2015.06.418
17.
Tewary
,
T.
,
Maity
,
S.
,
Mukherjee
,
S.
,
Roy
,
A.
,
Sarkar
,
P. P.
, and
Bhunia
,
S.
,
2022
, “
High Gain Miniaturrized Super‐Wideband Microstrip Patch Antenna
,”
Int. J. Commun. Syst.
,
35
(
11
), p.
e5181
.10.1002/dac.5181
18.
Przesmycki
,
R.
,
Bugaj
,
M.
, and
Nowosielski
,
L.
,
2020
, “
Broadband Microstrip Antenna for 5G Wireless Systems Operating at 28 GHz
,”
Electronics
,
10
(
1
), p.
1
.10.3390/electronics10010001
19.
Islam
,
T.
, and
Roy
,
S.
,
2023
, “
Low-Profile Meander Line Multiband Antenna for Wireless Body Area Network (WBAN) Applications With SAR Analysis
,”
Electronics
,
12
(
6
), p.
1416
.10.3390/electronics12061416
20.
Islam
,
M. S.
,
Kayser Azam
,
S. M.
,
Zakir Hossain
,
A. K. M.
,
Ibrahimy
,
M. I.
, and
Motakabber
,
S. M. A.
,
2022
, “
A Low-Profile Flexible Planar Monopole Antenna for Biomedical Applications
,”
Eng. Sci. Technol., Int. J.
,
35
, p.
101112
.10.1016/j.jestch.2022.101112
21.
Wongkasem
,
N.
,
2021
, “
Electromagnetic Pollution Alert: Microwave Radiation and Absorption in Human Organs and Tissues
,”
Electromagn. Biol. Med.
,
40
(
2
), pp.
236
253
.10.1080/15368378.2021.1874976
22.
Elsheakh
,
D. N.
,
Mohamed
,
R. A.
,
Fahmy
,
O. M.
,
Ezzat
,
K.
, and
Eldamak
,
A. R.
,
2023
, “
Complete Breast Cancer Detection and Monitoring System by Using Microwave Textile Based Antenna Sensors
,”
Biosensors
,
13
(
1
), p.
87
.10.3390/bios13010087
You do not currently have access to this content.