Abstract

Tinnitus is a health condition that affects a large population. Clinical diagnosis and treatment have been developed for treating tinnitus for years. However, there are still limitations because researchers have yet to elucidate the mechanisms underlying how tinnitus neural signals develop in brain structures. Abnormal neural interactions among the brain areas are considered to play an important role in tinnitus generation. Researchers have been studying neural activities in the auditory brain structures, including the dorsal cochlear nucleus (DCN), inferior colliculus (IC), and auditory cortex (AC), to seek a better understanding of the information flow among these brain regions, especially in comparison with both health and tinnitus conditions. In this project, neural activities from the DCN, IC, and AC were collected and analyzed before and after the animals were noise-exposed and before and after their auditory cortices were electrically stimulated. These conditions in rats were used to estimate healthy animals, noise-trauma-induced tinnitus, and after auditory cortex electrical stimulation (ACES) treatment. The signal processing algorithms started with the raw measurement data and focused on the local field potentials (LFPs) and spikes in the time domain. The firing rate, shape of spikes, and time differences among channels were analyzed in the time domain, and phase–phase correlation was used to test the phase-frequency information. All the analysis results were summarized in plots and color-heat maps and also used to identify if any neural signal differs and cross-channel relation changes at various animal conditions and discussed.

References

1.
Tunkel
,
D. E.
,
Bauer
,
C. A.
,
Sun
,
G. H.
,
Rosenfeld
,
R. M.
,
Chandrasekhar
,
S. S.
,
Cunningham
,
E. R.
, Jr
,
Archer
,
S. M.
, et al.,
2014
, “
Clinical Practice Guideline: Tinnitus
,”
Otolaryngol.–Head Neck Surg.
,
151
(
S2
), pp.
S1
S40
.10.1177/0194599814545325
2.
Baguley
,
D.
,
McFerran
,
D.
, and
Hall
,
D.
,
2013
, “
Tinnitus
,”
Lancet
,
382
(
9904
), pp.
1600
1607
.10.1016/S0140-6736(13)60142-7
3.
Mohan
,
A.
,
Leong
,
S. L.
,
De Ridder
,
D.
, and
Vanneste
,
S.
,
2022
, “
Symptom Dimensions to Address Heterogeneity in Tinnitus
,”
Neurosci. Biobehav. Rev.
,
134
, p.
104542
.10.1016/j.neubiorev.2022.104542
4.
Coelho
,
C. B.
,
Santos
,
R.
,
Campara
,
K. F.
, and
Tyler
,
R.
,
2020
, “
Classification of Tinnitus: Multiple Causes With the Same Name
,”
Otolaryngol. Clin. North Am.
,
53
(
4
), pp.
515
529
.10.1016/j.otc.2020.03.015
5.
Cheng
,
Y.
,
Xirasagar
,
S.
,
Kuo
,
N.
, and
Lin
,
H.
,
2023
, “
Tinnitus and Risk of Attempted Suicide: A One Year Follow-Up Study
,”
J. Affective Disord.
,
322
, pp.
141
145
.10.1016/j.jad.2022.11.009
6.
Axelsson
,
A.
, and
Ringdahl
,
A.
,
1989
, “
Tinnitus—A Study of Its Prevalence and Characteristics
,”
Br. J. Audiol.
,
23
(
1
), pp.
53
62
.10.3109/03005368909077819
7.
Langguth
,
B.
,
Kreuzer
,
P. M.
,
Kleinjung
,
T.
, and
De Ridder
,
D.
,
2013
, “
Tinnitus: Causes and Clinical Management
,”
Lancet Neurol.
,
12
(
9
), pp.
920
930
.10.1016/S1474-4422(13)70160-1
8.
Folmer
,
R. L.
, and
Griest
,
S. E.
,
2003
, “
Chronic Tinnitus Resulting From Head or Neck Injuries
,”
Laryngoscope
,
113
(
5
), pp.
821
827
.10.1097/00005537-200305000-00010
9.
Mazurek
,
B.
,
Hesse
,
G.
,
Dobel
,
C.
,
Kratzsch
,
V.
,
Lahmann
,
C.
,
Sattel
,
H.
, and Guideline Group,
2022
, “
Chronic Tinnitus
,”
Dtsch Arztebl Int.
,
119
(
13
), pp.
219
225
.10.3238/arztebl.m2022.0135
10.
Michael-Titus
,
A.
,
Revest
,
P.
, and
Shortland
,
P.
,
2010
, “
Hearing and Balance: The Auditory and Vestibular Systems
,”
The Nervous System
, 2nd ed., Elsevier Health Sciences, UK, pp.
141
158
.
11.
Link
,
M. J.
, and
Sloan
,
C. Y.
,
2003
, “
Midbrain
,”
Encyclopedia of the Neurological Sciences
, Elsevier Inc., Amsterdam, The Netherlands, pp.
152
159
.10.1016/B0-12-226870-9/00787-5
12.
Smit
,
J. V.
,
Janssen
,
M. L.
,
van Zwieten
,
G.
,
Jahanshahi
,
A.
,
Temel
,
Y.
, and
Stokroos
,
R. J.
,
2016
, “
Deep Brain Stimulation of the Inferior Colliculus in the Rodent Suppresses Tinnitus
,”
Brain Res.
,
1650
, pp.
118
124
.10.1016/j.brainres.2016.08.046
13.
Brozoski
,
T. J.
,
Bauer
,
C. A.
, and
Caspary
,
D. M.
,
2002
, “
Elevated Fusiform Cell Activity in the Dorsal Cochlear Nucleus of Chinchillas With Psychophysical Evidence of Tinnitus
,”
J. Neurosci.
,
22
(
6
), pp.
2383
2390
.10.1523/JNEUROSCI.22-06-02383.2002
14.
Reyes
,
S. A.
,
Salvi
,
R. J.
,
Burkard
,
R. F.
,
Coad
,
M. L.
,
Wack
,
D. S.
,
Galantowicz
,
P. J.
, and
Lockwood
,
A. H.
,
2002
, “
Brain Imaging of the Effects of Lidocaine on Tinnitus
,”
Hearing Res.
,
171
(
1–2
), pp.
43
50
.10.1016/S0378-5955(02)00346-5
15.
Aitkin
,
L. M.
, and
Phillips
,
S. C.
,
1984
, “
Is the Inferior Colliculus an Obligatory Relay in the Cat Auditory System?
,”
Neurosci. Lett.
,
44
(
3
), pp.
259
264
.10.1016/0304-3940(84)90032-6
16.
Mulders
,
W. H.
,
McMahen
,
C.
, and
Robertson
,
D.
,
2014
, “
Effects of Chronic Furosemide on Central Neural Hyperactivity and Cochlear Thresholds After Cochlear Trauma in Guinea Pig
,”
Front. Neurol.
,
5
, p.
107302
.10.3389/fneur.2014.00146
17.
Llinas
,
R. R.
,
Ribary
,
U.
,
Jeanmonod
,
D.
,
Kronberg
,
E.
, and
Mitra
,
P. P.
,
1999
, “
Thalamocortical Dysrhythmia: A Neurological and Neuropsychiatric Syndrome Characterized by Magnetoencephalography
,”
Proc. Natl. Acad. Sci. U S A
,
96
(
26
), pp.
15222
15227
.10.1073/pnas.96.26.15222
18.
Berger
,
J. I.
, and
Coomber
,
B.
,
2015
, “
Tinnitus-Related Changes in the Inferior Colliculus
,”
Front. Neurol.
,
6
, p.
129603
.10.3389/fneur.2015.00061
19.
Thomas
,
G.
, and
Jobst
,
B.
,
2017
, “
Feedback-Sensitive and Closed-Loop Solutions
,”
Innovative Neuromodulation
, Elsevier Inc., Amsterdam, The Netherlands, pp.
41
59
.10.1016/B978-0-12-800454-8.00002-1
20.
Selimbeyoglu
,
A.
, and
Parvizi
,
J.
,
2010
, “
Electrical Stimulation of the Human Brain: Perceptual and Behavioral Phenomena Reported in the Old and New Literature
,”
Front. Human Neurosci.
,
4
, p.
46
.10.3389/fnhum.2010.00046
21.
De Ridder
,
D.
,
De Mulder
,
G.
,
Menovsky
,
T.
,
Sunaert
,
S.
, and
Kovacs
,
S.
,
2007
, “
Electrical Stimulation of Auditory and Somatosensory Cortices for Treatment of Tinnitus and Pain
,”
Prog. Brain Res.
,
166
, pp.
377
388
.10.1016/S0079-6123(07)66036-1
22.
Zhang
,
J.
,
Luo
,
H.
,
Pace
,
E.
,
Li
,
L.
, and
Liu
,
B.
,
2016
, “
Psychophysical and Neural Correlates of Noised-Induced Tinnitus in Animals: Intra- and Inter-Auditory and Non-Auditory Brain Structure Studies
,”
Hearing Res.
,
334
, pp.
7
19
.10.1016/j.heares.2015.08.006
23.
Zhu
,
N.
,
Luo
,
H.
, and
Zhang
,
J.
,
2020
, “
Evaluating Auditory Neural Activities and Information Transfer Using Phase and Spike Train Correlation Algorithms
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
7
), pp.
1548
1555
.10.1109/TNSRE.2020.2998980
24.
Zhu
,
L.
,
Luo
,
H.
, and
Zhang
,
J.
,
2022
, “
Using Time Difference Analysis Algorithms to Measure the Response Time of Rat Auditory Cortex Neurons to Auditory Nerve Stimulation
,”
Meas. Control
,
55
(
3–4
), pp.
126
135
.10.1177/00202940221089242
You do not currently have access to this content.