Abstract

To determine behind armor blunt trauma (BABT) injury criteria, experiments have been conducted by launching blunt projectiles at live swine at velocities up to 65 meters per second (m/s) using one type of indenter design. To ensure the generalizability of the developed injury criteria, additional tests with different indenter designs are needed. The objectives of this study were to evaluate the kinematics and injury parameters from two indenter designs using human body finite element modeling. The simulation matrix consisted of chord and cylindrical shape indenter designs with two different masses of 150 and 230 grams. They were used to impact the liver and lung regions at velocities of 30 and 60 m/s using a human body model. Rib and lung strains from lung impacts and rib strain and liver strain energy densities (SED) from liver impacts were used to evaluate the design variables of mass and shape. Both designs played a role in skeletal and organ injury parameters. Analysis revealed an increased susceptibility for skeletal and organ traumas with the high mass indenter during high velocity impacts. The cylindrical indenter may be protective for organ injuries due to the larger area of loading on the ribcage compared to the chord indenter. Results from the chord indenter may serve as a conservative estimate of injury criteria.

References

1.
Prather
,
R.
,
Swann
,
C.
, and
Hawkins
,
C. E.
,
1977
, “
Backface Signatures of Soft Body Armors and the Associated Trauma Effects
,”
U.S. Army Armament Research and Development Command Technology Center
,
Aberdeen Proving Ground, MD
, Report No.
ARCSL-TR-77055.
https://apps.dtic.mil/sti/citations/ADA049463
2.
Yoganandan
,
N.
,
Shah
,
A.
,
Somberg
,
L.
,
Baisden
,
J.
,
Stemper
,
B. D.
,
Bass
,
C.
,
Salzar
,
R. S.
,
Chancey
,
V. C.
, and
McEntire
,
J.
,
2023
, “
A Novel Paradigm to Develop Regional Thoracoabdominal Criteria for Behind Armor Blunt Trauma Based on Original Data
,”
Mil. Med.
,
188
(
Suppl_6
), pp.
598
605
.10.1093/milmed/usad272
3.
Cavanaugh
,
J. M.
, and
Yoganandan
,
N.
,
2015
, “
Thoracic Injury Biomechanics
,”
Accidental Injury: Biomechanics and Prevention
,
N.
Yoganandan
,
A. M.
Nahum
, and
J. W.
Mlevin
, eds.,
Springer
,
New York
.
4.
Yoganandan
,
N.
,
Pintar
,
F. A.
, and
Maltese
,
M. R.
,
2001
, “
Biomechanics of Abdominal Injuries
,”
Crit. Rev. Biomed. Eng.
,
29
(
2
), pp.
173
246
.10.1615/CritRevBiomedEng.v29.i2.10
5.
Eaton
,
M. A. K.
,
Henderson
,
K. A.
,
McMahon
,
J. A.
, and
Salzar
,
R. S.
, “
Testing the Validity of the NIJ Clay Standard for Approving Body Armor With a Preliminary Insight Into Injury Correlation
,”
ASME
Paper No. IMECE2020-23886.10.1115/IMECE2020-23886
6.
Joost OptEynde
,
S. A.
,
McMahon
,
J.
,
Pang
,
D.
,
Stemper
,
B.
,
Yoganandan
,
N.
,
Salzar
,
R. S.
,
McEntire
,
J.
, and
Bass
,
C. R.
,
2023
, “
Scaling Animal to Human Injury Response for Use in Improved Behind Armor Blunt Trauma Injury Criteria
,”
PASS Dresden
,
Germany
, Sept. 11–15, pp.
99
104
.
7.
Yoganandan
,
N.
,
Shah
,
A.
,
Koser
,
J.
,
Stemper
,
B. D.
,
Somberg
,
L.
,
Chancey
,
V. C.
, and
McEntire
,
J.
,
2024
, “
Behind Armor Blunt Trauma: Liver Injuries Using a Live Animal Model
,”
Mil. Med.
,
189
(
Suppl_3
), pp.
659
664
.10.1093/milmed/usae214
8.
Bass
,
C. R.
,
Salzar
,
R. S.
,
Lucas
,
S. R.
,
Davis
,
M.
,
Donnellan
,
L.
,
Folk
,
B.
,
Sanderson
,
E.
, and
Waclawik
,
S.
,
2006
, “
Injury Risk in Behind Armor Blunt Thoracic Trauma
,”
Int. J. Occup. Saf. Ergon.
,
12
(
4
), pp.
429
442
.10.1080/10803548.2006.11076702
9.
Bir
,
C.
, and
Viano
,
D. C.
,
2004
, “
Design and Injury Assessment Criteria for Blunt Ballistic Impacts
,”
J. Trauma
,
57
(
6
), pp.
1218
1224
.10.1097/01.TA.0000114066.77967.DE
10.
Gayzik
,
S. F.
,
2008
, “
Development of a Finite Element Based Injury Metric for Pulmonary Contusion
,”
Ph.D. dissertation
,
Wake Forest University
, Winston-Salem, NC.https://vtechworks.lib.vt.edu/items/f387e536-861f-43c8-a114-e0691fde7b75
11.
Katzenberger
,
M. J.
,
Albert
,
D. L.
,
Agnew
,
A. M.
, and
Kemper
,
A. R.
,
2020
, “
Effects of Sex, Age, and Two Loading Rates on the Tensile Material Properties of Human Rib Cortical Bone
,”
J. Mech. Behav. Biomed. Mater.
,
102
, p.
103410
.10.1016/j.jmbbm.2019.103410
12.
Kemper
,
A. R.
,
Santago
,
A. C.
,
Stitzel
,
J. D.
,
Sparks
,
J. L.
, and
Duma
,
S. M.
,
2010
, “
Biomechanical Response of Human Liver in Tensile Loading
,”
Ann. Adv. Automot. Med.
,
54
, pp.
15
26
.https://pmc.ncbi.nlm.nih.gov/articles/PMC3242546/
13.
Kote
,
V. B.
,
Frazer
,
L. L.
,
Hostetler
,
Z. S.
,
Jones
,
D. A.
,
Davis
,
M.
,
Op't Eynde
,
J.
,
Kait
,
J.
, et al.,
2024
, “
Investigating the Impact of Blunt Force Trauma: A Probabilistic Study of Behind Armor Blunt Trauma Risk
,”
Ann. Biomed. Eng.
, pp.
1
15
.10.1007/s10439-024-03564-3
14.
Laing
,
X.
,
Yaoke
,
W.
, and
Aijun
,
C.
,
2022
, “
Study of Impact Effects of Rifle Bullet Penetrating the SiC/UHMWPE Armor Covered Human Torso
,”
J. Phys.
,
2478
, p.
072040
.10.1088/1742-6596/2478/7/072040
15.
Iwamoto
,
M.
, and
Nakahira
,
Y.
,
2015
, “
Development and Validation of the Total HUman Model for Safety (THUMS) Version 5 Containing Multiple 1D Muscles for Estimating Occupant Motions With Muscle Activation During Side Impacts
,”
Stapp Car Crash J.
,
59
, pp.
53
90
.10.4271/2015-22-0003
16.
Iwamoto
,
M.
,
Nakahira
,
Y.
, and
Kimpara
,
H.
,
2015
, “
Development and Validation of the Total HUman Model for Safety (THUMS) Toward Further Understanding of Occupant Injury Mechanisms in Precrash and During Crash
,”
Traffic Inj. Prev.
,
16
(
Suppl 1
), pp.
S36
S48
.10.1080/15389588.2015.1015000
You do not currently have access to this content.