Abstract

Given the rise of head injury in the youth, much focus has been directed toward predicting brain injury using simulation tools such as finite element analysis. Various brain strain measures are proposed as indicators of concussion. However, the clinical connection between brain strain and cognitive changes has not been fully established. In this study, we develop a framework to compare strains and other metrics obtained from finite element brain simulations with sideline cognitive testing results. We conducted a preliminary study for ten college football players. The players were equipped with custom fit mouthguards and were monitored for one season. A total of 2185 impacts were collected, and eight cognitive tests were conducted that were triggered when acceleration measurement exceed a threshold of 30Gs. Axonal injury metrics were examined while considering cognitive scores. This study represents a protocol investigation with preliminary findings, as it explores the correlation between brain strain metrics and cognitive deficits in a sample of ten football players over one season.

References

1.
CDC Injury Center, 2025, “
Traumatic Brain Injury/Concussion
,” CDC Injury Center, Atlanta, GA, accessed Feb. 17, 2025, https://www.cdc.gov/traumaticbraininjury/index.html
2.
Miller
,
L. E.
,
Urban
,
J. E.
,
Espeland
,
M. A.
,
Walkup
,
M. P.
,
Holcomb
,
J. M.
,
Davenport
,
E. M.
,
Powers
,
A. K.
,
Whitlow
,
C. T.
,
Maldjian
,
J. A.
, and
Stitzel
,
J. D.
,
2022
, “
Cumulative Strain-Based Metrics for Predicting Subconcussive Head Impact Exposure-Related Imaging Changes in a Cohort of American Youth Football Players
,”
J. Neurosurg.: Pediatr.
,
29
(
4
), pp.
387
396
.10.3171/2021.10.PEDS21355
3.
Giordano
,
C.
, and
Kleiven
,
S.
,
2014
, “
Evaluation of Axonal Strain as a Predictor for Mild Traumatic Brain Injuries Using Finite Element Modeling
,”
SAE
Paper No. 2014-22-0002.10.4271/2014-22-0002
4.
Nakadate
,
H.
,
Kurtoglu
,
E.
,
Furukawa
,
H.
,
Oikawa
,
S.
,
Aomura
,
S.
,
Kakuta
,
A.
, and
Matsui
,
Y.
,
2017
, “
Strain-Rate Dependency of Axonal Tolerance for Uniaxial Stretching
,”
SAE
Paper No. 2017-22-0003.10.4271/2017-22-0003
5.
Grijalva
,
C.
,
Mullins
,
V. A.
,
Michael
,
B. R.
,
Hale
,
D.
,
Wu
,
L.
,
Toosizadeh
,
N.
,
Chilton
,
F. H.
, and
Laksari
,
K.
,
2023
, “
Neuroimaging, Wearable Sensors, and Blood-Based Biomarkers Reveal Hyperacute Changes in the Brain After Sub-Concussive Impacts
,”
Brain Multiphys.
,
5
, p.
100086
.10.1016/j.brain.2023.100086
6.
McAllister
,
T.
,
Flashman
,
L.
,
Maerlender
,
A.
,
Greenwald
,
R.
,
Beckwith
,
J.
,
Tosteson
,
T.
, and
Crisco
,
J.
, et al.,
2012
, “
Cognitive Effects of One Season of Head Impacts in a Cohort of Collegiate Contact Sport Athletes
,”
Neurology
,
78
(
22
), pp.
1777
1784
.10.1212/WNL.0b013e3182582fe7
7.
Wu
,
L. C.
,
Nangia
,
V.
,
Bui
,
K.
,
Hammoor
,
B.
,
Kurt
,
M.
,
Hernandez
,
F.
,
Kuo
,
C.
, and
Camarillo
,
D. B.
,
2016
, “
In Vivo Evaluation of Wearable Head Impact Sensors
,”
Ann. Biomed. Eng.
,
44
(
4
), pp.
1234
1245
.10.1007/s10439-015-1423-3
8.
Kieffer
,
E. E.
,
Begonia
,
M. T.
,
Tyson
,
A. M.
, and
Rowson
,
S.
,
2020
, “
A Two-Phased Approach to Quantifying Head Impact Sensor Accuracy: In-Laboratory and On-Field Assessments
,”
Ann. Biomed. Eng.
,
48
(
11
), pp.
2613
2625
.10.1007/s10439-020-02647-1
9.
Prevent Biometrics, 2025, “
Prevent Biometrics—Impact Monitoring Mouthguard
,” Prevent Biometrics, Edina, MN, accessed Feb. 17, 2025, https://preventbiometrics.com/
10.
Camarillo
,
D. B.
,
Shull
,
P. B.
,
Mattson
,
J.
,
Shultz
,
R.
, and
Garza
,
D.
,
2013
, “
An Instrumented Mouthguard for Measuring Linear and Angular Head Impact Kinematics in American Football
,”
Ann. Biomed. Eng.
,
41
(
9
), pp.
1939
1949
.10.1007/s10439-013-0801-y
11.
Jones
,
B.
,
Tooby
,
J.
,
Weaving
,
D.
,
Till
,
K.
,
Owen
,
C.
,
Begonia
,
M.
, and
Stokes
,
K. A.
, et al.,
2022
, “
Ready for Impact? A Validity and Feasibility Study of Instrumented Mouthguards (iMGs)
,”
Br. J. Sports Med.
,
56
(
20
), pp.
1171
1179
.10.1136/bjsports-2022-105523
12.
ImPACT Applications Inc., 2024, “
Concussion Management Research
,” ImPACT Applications Inc., Coralville, IA, accessed Jan. 12, 2024, https://concussionresearch.com/
13.
Lovell
,
M. R.
,
Iverson
,
G. L.
,
Collins
,
M. W.
,
Podell
,
K.
,
Johnston
,
K. M.
,
Pardini
,
D.
,
Pardini
,
J.
,
Norwig
,
J.
, and
Maroon
,
J. C.
,
2006
, “
Measurement of Symptoms Following Sports-Related Concussion: Reliability and Normative Data for the Post-Concussion Scale
,”
Appl. Neuropsychol.
,
13
(
3
), pp.
166
174
.10.1207/s15324826an1303_4
14.
Menghani
,
R. R.
,
Das
,
A.
, and
Kraft
,
R. H.
,
2023
, “
A Sensor-Enabled Cloud-Based Computing Platform for Computational Brain Biomechanics
,”
Comput. Methods Programs Biomed.
,
233
, p.
107470
.10.1016/j.cmpb.2023.107470
15.
Kleiven
,
S.
,
2007
, “
Predictors for Traumatic Brain Injuries Evaluated Through Accident Reconstructions
,”
SAE
Paper No. 2007-22-0003.10.4271/2007-22-0003
16.
Zhou
,
C.
,
Khalil
,
T.
, and
King
,
A.
,
1995
, “
A New Model Comparing Impact Responses of the Homogeneous and Inhomogeneous Human Brain
,”
SAE
Paper No. 952714.10.4271/952714
17.
Takhounts
,
E. G.
,
Ridella
,
S. A.
,
Hasija
,
V.
,
Tannous
,
R. E.
,
Campbell
,
J. Q.
,
Malone
,
D.
,
Danelson
,
K.
,
Stitzel
,
J.
,
Rowson
,
S.
, and
Duma
,
S.
,
2008
, “
Investigation of Traumatic Brain Injuries Using the Next Generation of Simulated Injury Monitor (SIMon) Finite Element Head Model
,”
SAE
Paper No. 2008-22-0001.10.4271/2008-22-0001
18.
Ji
,
S.
,
Zhao
,
W.
,
Ford
,
J. C.
,
Beckwith
,
J. G.
,
Bolander
,
R. P.
,
Greenwald
,
R. M.
,
Flashman
,
L. A.
,
Paulsen
,
K. D.
, and
McAllister
,
T. W.
,
2015
, “
Group-Wise Evaluation and Comparison of White Matter Fiber Strain and Maximum Principal Strain in Sports-Related Concussion
,”
J. Neurotrauma
,
32
(
7
), pp.
441
454
.10.1089/neu.2013.3268
19.
McAllister
,
T. W.
,
Ford
,
J. C.
,
Ji
,
S.
,
Beckwith
,
J. G.
,
Flashman
,
L. A.
,
Paulsen
,
K.
, and
Greenwald
,
R. M.
,
2012
, “
Maximum Principal Strain and Strain Rate Associated With Concussion Diagnosis Correlates With Changes in Corpus Callosum White Matter Indices
,”
Ann. Biomed. Eng.
,
40
(
1
), pp.
127
140
.10.1007/s10439-011-0402-6
20.
Beckwith
,
J. G.
,
Zhao
,
W.
,
Ji
,
S.
,
Ajamil
,
A. G.
,
Bolander
,
R. P.
,
Chu
,
J. J.
, and
McAllister
,
T. W.
, et al.,
2018
, “
Estimated Brain Tissue Response Following Impacts Associated With and Without Diagnosed Concussion
,”
Ann. Biomed. Eng.
,
46
(
6
), pp.
819
830
.10.1007/s10439-018-1999-5
21.
Wu
,
S.
,
Zhao
,
W.
,
Ghazi
,
K.
, and
Ji
,
S.
,
2019
, “
Convolutional Neural Network for Efficient Estimation of Regional Brain Strains
,”
Sci. Rep.
,
9
(
1
), p.
17326
.10.1038/s41598-019-53551-1
22.
Gabler
,
L. F.
,
Crandall
,
J. R.
, and
Panzer
,
M. B.
,
2016
, “
Assessment of Kinematic Brain Injury Metrics for Predicting Strain Responses in Diverse Automotive Impact Conditions
,”
Ann. Biomed. Eng.
,
44
(
12
), pp.
3705
3718
.10.1007/s10439-016-1697-0
23.
Gabler
,
L. F.
,
Crandall
,
J. R.
, and
Panzer
,
M. B.
,
2019
, “
Development of a Second-Order System for Rapid Estimation of Maximum Brain Strain
,”
Ann. Biomed. Eng.
,
47
(
9
), pp.
1971
1981
.10.1007/s10439-018-02179-9
24.
Zhan
,
X.
,
Liu
,
Y.
,
Cecchi
,
N. J.
,
Gevaert
,
O.
,
Zeineh
,
M. M.
,
Grant
,
G. A.
, and
Camarillo
,
D. B.
,
2021
, “
Rapidly and Accurately Estimating Brain Strain and Strain Rate Across Head Impact Types With Transfer Learning and Data Fusion
,” preprint
arXiv:2108.13577
.10.48550/arXiv.2108.13577
25.
Liu
,
Y.
,
Domel
,
A. G.
,
Cecchi
,
N. J.
,
Rice
,
E.
,
Callan
,
A. A.
,
Raymond
,
S. J.
, and
Zhou
,
Z.
, et al.,
2021
, “
Time Window of Head Impact Kinematics Measurement for Calculation of Brain Strain and Strain Rate in American Football
,”
Ann. Biomed. Eng.
,
49
(
10
), pp.
2791
2804
.10.1007/s10439-021-02821-z
26.
Wu
,
T.
,
Hajiaghamemar
,
M.
,
Giudice
,
J. S.
,
Alshareef
,
A.
,
Margulies
,
S. S.
, and
Panzer
,
M. B.
,
2021
, “
Evaluation of Tissue-Level Brain Injury Metrics Using Species-Specific Simulations
,”
J. Neurotrauma
,
38
(
13
), pp.
1879
1888
.10.1089/neu.2020.7445
27.
Wright
,
R. M.
, and
Ramesh
,
K.
,
2012
, “
An Axonal Strain Injury Criterion for Traumatic Brain Injury
,”
Biomech. Model. Mechanobiol.
,
11
(
1–2
), pp.
245
260
.10.1007/s10237-011-0307-1
28.
Giordano
,
C.
,
Zappalà
,
S.
, and
Kleiven
,
S.
,
2017
, “
Anisotropic Finite Element Models for Brain Injury Prediction: The Sensitivity of Axonal Strain to White Matter Tract Inter-Subject Variability
,”
Biomech. Model. Mechanobiol.
,
16
(
4
), pp.
1269
1293
.10.1007/s10237-017-0887-5
29.
Hajiaghamemar
,
M.
, and
Margulies
,
S. S.
,
2021
, “
Multi-Scale White Matter Tract Embedded Brain Finite Element Model Predicts the Location of Traumatic Diffuse Axonal Injury
,”
J. Neurotrauma
,
38
(
1
), pp.
144
157
.10.1089/neu.2019.6791
30.
Tierney
,
G.
,
2024
, “
Concussion Biomechanics, Head Acceleration Exposure and Brain Injury Criteria in Sport: A Review
,”
Sports Biomech.
,
23
(
11
), pp.
1888
1916
.10.1080/14763141.2021.2016929
31.
Ji
,
S.
,
Zhao
,
W.
,
Li
,
Z.
, and
McAllister
,
T. W.
,
2014
, “
Head Impact Accelerations for Brain Strain-Related Responses in Contact Sports: A Model-Based Investigation
,”
Biomech. Model. Mechanobiol.
,
13
(
5
), pp.
1121
1136
.10.1007/s10237-014-0562-z
32.
So
,
A.
,
2018
, “
This Smart Mouthguard Can Monitor Concussions
,” WIRED, Boone, IA, accessed Feb. 17, 2025, https://www.wired.com/story/this-smart-mouthguard-can-monitor-concussions/
33.
Kundra
,
S. N.
,
2004
, “
Concussion in Professional Football: Reconstruction of Game Impacts and Injuries
,”
Neurosurgery
,
55
(
1
), p.
260
.10.1227/01.neu.0000440734.89628.24
34.
Sanchez
,
E. J.
,
Gabler
,
L. F.
,
Good
,
A. B.
,
Funk
,
J. R.
,
Crandall
,
J. R.
, and
Panzer
,
M. B.
,
2019
, “
A Reanalysis of Football Impact Reconstructions for Head Kinematics and Finite Element Modeling
,”
Clin. Biomech.
,
64
, pp.
82
89
.10.1016/j.clinbiomech.2018.02.019
35.
Cecchi
,
N. J.
,
Domel
,
A. G.
,
Liu
,
Y.
,
Rice
,
E.
,
Lu
,
R.
,
Zhan
,
X.
, and
Zhou
,
Z.
, et al.,
2021
, “
Identifying Factors Associated With Head Impact Kinematics and Brain Strain in High School American Football Via Instrumented Mouthguards
,”
Ann. Biomed. Eng.
,
49
(
10
), pp.
2814
2826
.10.1007/s10439-021-02853-5
36.
Yeh
,
F.-C.
,
Panesar
,
S.
,
Fernandes
,
D.
,
Meola
,
A.
,
Yoshino
,
M.
,
Fernandez-Miranda
,
J. C.
,
Vettel
,
J. M.
, and
Verstynen
,
T.
,
2018
, “
Population-Averaged Atlas of the Macroscale Human Structural Connectome and Its Network Topology
,”
Neuroimage
,
178
, pp.
57
68
.10.1016/j.neuroimage.2018.05.027
37.
Boisgueheneuc
,
F. D.
,
Levy
,
R.
,
Volle
,
E.
,
Seassau
,
M.
,
Duffau
,
H.
,
Kinkingnehun
,
S.
,
Samson
,
Y.
,
Zhang
,
S.
, and
Dubois
,
B.
,
2006
, “
Functions of the Left Superior Frontal Gyrus in Humans: A Lesion Study
,”
Brain
,
129
(
12
), pp.
3315
3328
.10.1093/brain/awl244
38.
El-Baba
,
R. M.
, and
Schury
,
M. P.
,
2020
, “
Neuroanatomy, Frontal Cortex
,”
StatPearls Publishing
, Treasure Island, FL.https://www.ncbi.nlm.nih.gov/books/NBK554483/
39.
Buckner
,
R. L.
,
Kelley
,
W. M.
, and
Petersen
,
S. E.
,
1999
, “
Frontal Cortex Contributes to Human Memory Formation
,”
Nat. Neurosci.
,
2
(
4
), pp.
311
314
.10.1038/7221
40.
Kanai
,
R.
, and
Rees
,
G.
,
2011
, “
The Structural Basis of Inter-Individual Differences in Human Behaviour and Cognition
,”
Nat. Rev. Neurosci.
,
12
(
4
), pp.
231
242
.10.1038/nrn3000
41.
Seghier
,
M. L.
, and
Price
,
C. J.
,
2018
, “
Interpreting and Utilising Intersubject Variability in Brain Function
,”
Trends Cognit. Sci.
,
22
(
6
), pp.
517
530
.10.1016/j.tics.2018.03.003
42.
Martin
,
V. A.
,
Kraft
,
R. H.
,
Hannah
,
T. H.
, and
Ellis
,
S.
,
2022
, “
An Energy-Based Study of the Embedded Element Method for Explicit Dynamics
,”
Adv. Model. Simul. Eng. Sci.
,
9
(
1
), p.
12
.10.1186/s40323-022-00223-x
You do not currently have access to this content.