In electrochemical micromachining (EMM) of microfeatures using straight cylindrical microtools, sidewalls of the structure tapers as depth increases. Disk microtool electrodes are used to minimize the taper formation during the machining of microfeatures. At present disk microtool electrodes are fabricated by wire electrical discharge grinding, reverse electro discharge machining (EDM), and microwire electro discharge machining method, which needs separate EDM machine as well as fabricated microtools suffer from thermal defects like microcracks on surface, residual stress, deformation, and needs careful handling. To overcome these limitations, new method is proposed to fabricate disk microtool electrode by EMM. Also the influences of EMM process parameters like applied voltage, pulse frequency, duty ratio, electrolyte concentration on shank diameter, material removal rate, and surface quality are investigated. Disk microtool electrode of disk height 70 μm, disk diameter 175 μm, shank diameter 93 μm, and shank height 815 μm have been fabricated from tungsten microrod of 300 μm diameter by proposed method and used to machine microfeatures like cylindrical hole with reduced taper angle, reverse taper hole, taper free microgroove, and 3D microstructure with plane surfaces on stainless steel by EMM. Effects of disk height on machining accuracy during generation of microhole, in the form of taper angle are also presented in the paper. Proposed method of developing disk electrode by EMM will be very useful for fabricating disk microtool electrodes with different disk diameters, disk heights, shank diameter, and shank height with desired surface quality by controlling various process parameters. Disk microtools with lower disk heights are more effective to generate microfeatures with minimum taper.

References

1.
Mathew
,
R.
, and
Sundaram
,
M.
,
2012
, “
Modeling and Fabrication of Microtools by Pulsed Electrochemical Machining
,”
J. Mater. Process. Technol.
,
212
(
7
), pp.
1567
1572
.10.1016/j.jmatprotec.2012.03.004
2.
Jain
,
V. K.
,
Kalia
,
S.
,
Sidpara
,
A.
, and
Kulkarni
,
V.
,
2012
, “
Fabrication of Micro-Features and Micro-Tools Using Electrochemical Micromachining
,”
Int. J. Adv. Manuf. Technol.
,
61
(
9–12
), pp.
1175
1183
.10.1007/s00170-012-4088-1
3.
Zhang
,
Z.
,
Wang
,
Y.
,
Chen
,
F.
, and
Mao
,
W.
,
2011
, “
A Micro Machining System Based on Electrochemical Dissolution of Material
,”
Russ. J. Electrochem.
,
47
(
7
), pp.
819
824
.10.1134/S1023193511070172
4.
Liu
,
Y.
,
Zhu
,
D.
, and
Zhu
,
L.
,
2012
, “
Micro Electrochemical Milling of Complex Structures by Using In-Situ Fabricated Cylindrical Electrode
,”
Int. J. Adv. Manuf. Technol.
,
60
(
9–12
), pp.
977
984
.10.1007/s00170-011-3682-y
5.
Chiou
,
Y. C.
,
Lee
,
R. T.
,
Chen
,
T. J.
, and
Chiou
,
J. M.
,
2012
, “
Fabrication of High Aspect Ratio Micro-Rod Using a Novel Electrochemical Micro-Machining Method
,”
Precis. Eng.
,
36
(
2
), pp.
193
202
.10.1016/j.precisioneng.2011.09.004
6.
Fan
,
Z. W.
, and
Hourng
,
L. W.
,
2009
, “
The Analysis and Investigation on the Microelectrode Fabrication by Electrochemical Machining
,”
Int. J. Mach. Tools Manuf.
,
49
(
7–8
), pp.
659
666
.10.1016/j.ijmachtools.2009.01.011
7.
Choi
,
S. H.
,
Ryu
,
S. H.
,
Choi
,
D. K.
, and
Chu
,
C. N.
,
2007
, “
Fabrication of WC Micro-Shaft by Using Electrochemical Etching
,”
Int. J. Adv. Manuf. Technol.
,
31
(
7–8
), pp.
682
687
.10.1007/s00170-005-0241-4
8.
Lim
,
Y. M.
,
Lim
,
H. J.
,
Liu
,
J. R.
, and
Kim
,
S. H.
,
2003
, “
Fabrication of Cylindrical Micropins With Various Diameters Using DC Current Density Control
,”
J. Mater. Process. Technol.
,
141
(
2
), pp.
251
255
.10.1016/S0924-0136(03)00261-9
9.
Ghosal
,
B.
, and
Bhattacharyya
,
B.
,
2013
, “
Influence of Vibration on Micro-Tool Fabrication by Electrochemical Machining
,”
Int. J. Mach. Tools Manuf.
,
64
, pp.
49
59
.10.1016/j.ijmachtools.2012.07.014
10.
Liu
,
Y.
,
Zhu
,
D.
,
Zeng
,
Y.
, and
Yu
,
H.
,
2011
, “
Development of Microelectrodes for Electrochemical Micromachining
Int. J. Adv. Manuf. Technol.
,
55
(
1–4
), pp.
195
203
.10.1007/s00170-010-3035-2
11.
Kim
,
B. H.
,
Park
,
B. J.
, and
Chu
,
C. N.
,
2006
, “
Fabrication of Multiple Electrodes by Reverse EDM and Their Application in Micro-ECM
,”
J. Micromech. Microeng.
,
16
(
4
), pp.
843
850
.10.1088/0960-1317/16/4/022
12.
Kuo
,
C. L.
, and
Huang
,
J. D.
,
2003
, “
Fabrication of Series-Pattern Micro-Disk Electrode and Its Application in Machining Micro-Slit of Less Than 10 μm
,”
Int. J. Mach. Tools Manuf.
,
44
(
5
), pp.
545
553
.10.1016/j.ijmachtools.2003.10.021
13.
Yan
,
J.
,
Kaneko
,
T.
,
Uchida
,
K.
,
Nobuhito
,
Y.
, and
Kuriyagawa
,
T.
,
2010
, “
Fabricating Microgrooves With Varied Cross-Sections by Electro-Discharge Machining
,”
Int. J. Adv. Manuf. Technol.
,
50
(
9–12
), pp.
991
1002
.10.1007/s00170-010-2563-0
14.
Liu
,
Y.
, and
Song
,
H.
,
2011
, “
Fabrication of Micro Spherical Electrode by One Pulse Electrical Discharge Machining
,”
Proceedings of Second International Conference on Digital Manufacturing and Automation
, Min Chen, Han QingJue, and Yucai Zhou, eds., South Central University, Los Alamitos, IEE, Zhangjiajie, Hunan, China, pp.
531
534
.
15.
Nachiappan
,
R.
, and
Han
,
H.
,
2002
, “
Fabrication of Symmetrical Section Microfeatures Using the Electro-discharge Machining Block Electrode Method
,”
J. Micromech. Microeng.
,
12
(
6
), pp.
905
910
.10.1088/0960-1317/12/6/322
16.
Habib
,
M. A.
,
Gan
,
S. W.
, and
Rahman
,
M.
,
2009
, “
Fabrication of Complex Shape Electrodes by Localized Electrochemical Deposition
,”
J. Mater. Process. Technol.
,
209
(
9
), pp.
4453
4458
.10.1016/j.jmatprotec.2008.10.041
17.
Kim
,
B. H.
,
Ryu
,
S. H.
,
Choi
,
D. K.
, and
Chu
,
N. C.
,
2005
, “
Micro Electrochemical Milling
,”
J Micromech. Microeng.
,
15
, pp.
124
129
.10.1088/0960-1317/15/1/019
18.
Bhattacharyya
,
B.
, and
Munda
,
J.
,
2003
, “
Experimental Investigation Into Electrochemical Micromachining (EMM) Process
,”
J. Mater. Process. Technol.
,
140
, pp.
287
291
.10.1016/S0924-0136(03)00722-2
19.
Mithu
,
M. A. H.
, and
Fantoni
,
G.
,
2012
, “
Etching Behavior of Tungsten Microtool and Its Application in Electrochemical Micromachining
,”
Int. J. Precis. Technol.
,
2
(
4
), pp.
301
312
.10.1504/IJPTECH.2011.044899
20.
Fan
,
Z. W.
,
Hourng
,
L. W.
, and
Wang
,
C. Y.
,
2010
, “
Fabrication of Tungsten Microelectrode Using Pulsed Electrochemical Machining
,”
J. Soc. Precis. Eng.
,
34
, pp.
489
496
.10.1016/j.precisioneng.2010.01.001
You do not currently have access to this content.