Abstract

Targeted therapeutic delivery employs various technologies to enable precise delivery of therapeutic agents (drugs or cells) to specific areas within the human body. Compared with traditional drug administration routes, targeted therapeutic delivery has higher efficacy and reduced medication dosage and side effects. Soft microscale robotics have demonstrated great potential to precisely deliver drugs to the targeted region for performing designated therapeutic tasks. Microrobots can be actuated by various stimuli, such as heat, light, chemicals, acoustic waves, electric fields, and magnetic fields. Magnetic manipulation is well-suited for biomedical applications, as magnetic fields can safely permeate through organisms in a wide range of frequencies and amplitudes. Therefore, magnetic actuation is one of the most investigated and promising approaches for driving microrobots for targeted therapeutic delivery applications. To realize safe and minimally invasive therapies, biocompatibility and biodegradability are essential for these microrobots, which eliminate any post-treatment endoscopic or surgical removals. In this review, recent research efforts in the area of biodegradable magnetic microrobots used for targeted therapeutic delivery are summarized in terms of their materials, structure designs, and fabrication methods. In the end, remaining challenges and future prospects are discussed.

References

1.
Kim
,
J.
, and
De Jesus
,
O.
,
2023
, “
Medication Routes of Administration
,”
StatPearls Publishing
, Tampa, FL, accessed July 1, 2024, https://www.ncbi.nlm.nih.gov/books/NBK568677/
2.
Trafton
,
A.
,
2009
, “Targeting
Tumors Using Tiny Gold Particles
,”
MIT Tech Talk
,
53
, p.
4
.https://news.mit.edu/2009/gold-cancer-0504
3.
Mooney
,
D. J.
, and
Vandenburgh
,
H.
,
2008
, “
Cell Delivery Mechanisms for Tissue Repair
,”
Cell Stem Cell
,
2
(
3
), pp.
205
213
.10.1016/j.stem.2008.02.005
4.
Go
,
G.
,
Nguyen
,
V. D.
,
Jin
,
Z.
,
Park
,
J. O.
, and
Park
,
S.
,
2018
, “
A Thermo-Electromagnetically Actuated Microrobot for the Targeted Transport of Therapeutic Agents
,”
Int. J. Control Autom. Syst.
,
16
(
3
), pp.
1341
1354
.10.1007/s12555-017-0060-z
5.
Debata
,
S.
,
Kherani
,
N. A.
,
Panda
,
S. K.
, and
Singh
,
D. P.
,
2022
, “
Light-Driven Microrobots: Capture and Transport of Bacteria and Microparticles in a Fluid Medium
,”
J. Mater. Chem. B
,
10
(
40
), pp.
8235
8243
.10.1039/D2TB01367C
6.
Palima
,
D.
, and
Glückstad
,
J.
,
2013
, “
Gearing Up for Optical Microrobotics: Micromanipulation and Actuation of Synthetic Microstructures by Optical Forces
,”
Laser Photon. Rev.
,
7
(
4
), pp.
478
494
.10.1002/lpor.201200030
7.
Gao
,
W.
,
Dong
,
R.
,
Thamphiwatana
,
S.
,
Li
,
J.
,
Gao
,
W.
,
Zhang
,
L.
, and
Wang
,
J.
,
2015
, “
Artificial Micromotors in the Mouse's Stomach: A Step Toward In Vivo Use of Synthetic Motors
,”
ACS Nano
,
9
(
1
), pp.
117
123
.10.1021/nn507097k
8.
Solovev
,
A. A.
,
Mei
,
Y.
,
Ureña
,
E. B.
,
Huang
,
G.
, and
Schmidt
,
O. G.
,
2009
, “
Catalytic Microtubular Jet Engines Self‐Propelled by Accumulated Gas Bubbles
,”
Small
,
5
(
14
), pp.
1688
1692
.10.1002/smll.200900021
9.
Aghakhani
,
A.
,
Yasa
,
O.
,
Wrede
,
P.
, and
Sitti
,
M.
,
2020
, “
Acoustically Powered Surface-Slipping Mobile Microrobots
,”
Proc. Natl. Acad. Sci.
,
117
(
7
), pp.
3469
3477
.10.1073/pnas.1920099117
10.
Guo
,
S.
,
Ge
,
Y.
,
Li
,
L.
, and
Liu
,
S.
,
2006
, “
Underwater Swimming Micro Robot Using IPMC Actuator
,”
2006 International Conference on Mechatronics and Automation
, Luoyang, China, June 25–28, pp.
249
254
.10.1109/ICMA.2006.257505
11.
Tyagi
,
M.
,
Spinks
,
G. M.
, and
Jager
,
E. W.
,
2021
, “
3D Printing Microactuators for Soft Microrobots
,”
Soft Rob.
,
8
(
1
), pp.
19
27
.10.1089/soro.2019.0129
12.
Llacer‐Wintle
,
J.
,
Rivas‐Dapena
,
A.
,
Chen
,
X. Z.
,
Pellicer
,
E.
,
Nelson
,
B. J.
,
Puigmartí-Luis
,
J.
, and
Pané
,
S.
,
2021
, “
Biodegradable Small‐Scale Swimmers for Biomedical Applications
,”
Adv. Mater.
,
33
(
42
), p.
2102049
.10.1002/adma.202102049
13.
Feng
,
Y.
,
Feng
,
L.
,
Dai
,
Y.
,
Bai
,
X.
,
Zhang
,
C.
,
Chen
,
Y.
, and
Arai
,
F.
,
2020
, “
A Novel and Controllable Cell-Based Microrobot in Real Vascular Network for Target Tumor Therapy
,” 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Las Vegas, NV, Oct. 25–29, pp.
2828
2833
.10.1109/IROS45743.2020.9341774
14.
Lee
,
H.
,
Kim
,
D. I.
,
Kwon
,
S. H.
, and
Park
,
S.
,
2021
, “
Magnetically Actuated Drug Delivery Helical Microrobot With Magnetic Nanoparticle Retrieval Ability
,”
ACS Appl. Mater. Interfaces
,
13
(
17
), pp.
19633
19647
.10.1021/acsami.1c01742
15.
Nguyen
,
K. T.
,
Go
,
G.
,
Jin
,
Z.
,
Darmawan
,
B. A.
,
Yoo
,
A.
,
Kim
,
S.
,
Nan
,
M.
, et al.,
2021
, “
A Magnetically Guided Self‐Rolled Microrobot for Targeted Drug Delivery, Real‐Time X‐Ray Imaging, and Microrobot Retrieval
,”
Adv. Healthcare Mater.
,
10
(
6
), p.
2001681
.10.1002/adhm.202001681
16.
Peyer
,
K. E.
,
Tottori
,
S.
,
Qiu
,
F.
,
Zhang
,
L.
, and
Nelson
,
B. J.
,
2013
, “
Magnetic Helical Micromachines
,”
Chem. Eur. J.
,
19
(
1
), pp.
28
38
.10.1002/chem.201203364
17.
Jang
,
D.
,
Jeong
,
J.
,
Song
,
H.
, and
Chung
,
S. K.
,
2019
, “
Targeted Drug Delivery Technology Using Untethered Microrobots: A Review
,”
J. Micromech. Microeng.
,
29
(
5
), p.
053002
.10.1088/1361-6439/ab087d
18.
Yan
,
X.
,
Zhou
,
Q.
,
Vincent
,
M.
,
Deng
,
Y.
,
Yu
,
J.
,
Xu
,
J.
,
Xu
,
T.
, et al.,
2017
, “
Multifunctional Biohybrid Magnetite Microrobots for Imaging-Guided Therapy
,”
Sci. Rob.
,
2
(
12
), p.
eaaq1155
.10.1126/scirobotics.aaq1155
19.
Li
,
J.
,
Li
,
X.
,
Luo
,
T.
,
Wang
,
R.
,
Liu
,
C.
,
Chen
,
S.
,
Li
,
D.
,
Yue
,
J.
,
Cheng
,
S. H.
, and
Sun
,
D.
,
2018
, “
Development of a Magnetic Microrobot for Carrying and Delivering Targeted Cells
,”
Sci. Rob.
,
3
(
19
), p.
eaat8829
.10.1126/scirobotics.aat8829
20.
Kim
,
S.
,
Qiu
,
F.
,
Kim
,
S.
,
Ghanbari
,
A.
,
Moon
,
C.
,
Zhang
,
L.
,
Nelson
,
B. J.
, and
Choi
,
H.
,
2013
, “
Fabrication and Characterization of Magnetic Microrobots for Three‐Dimensional Cell Culture and Targeted Transportation
,”
Adv. Mater.
,
25
(
41
), pp.
5863
5868
.10.1002/adma.201301484
21.
Yasa
,
I. C.
,
Tabak
,
A. F.
,
Yasa
,
O.
,
Ceylan
,
H.
, and
Sitti
,
M.
,
2019
, “
3D‐Printed Microrobotic Transporters With Recapitulated Stem Cell Niche for Programmable and Active Cell Delivery
,”
Adv. Funct. Mater.
,
29
(
17
), p.
1808992
.10.1002/adfm.201808992
22.
Noh
,
S.
,
Jeon
,
S.
,
Kim
,
E.
,
Oh
,
U.
,
Park
,
D.
,
Park
,
S. H.
,
Kim
,
S. W.
, et al.,
2022
, “
A Biodegradable Magnetic Microrobot Based on Gelatin Methacrylate for Precise Delivery of Stem Cells With Mass Production Capability
,”
Small
,
18
(
25
), p.
2107888
.10.1002/smll.202107888
23.
Colombo
,
M.
,
Carregal-Romero
,
S.
,
Casula
,
M. F.
,
Gutiérrez
,
L.
,
Morales
,
M. P.
,
Böhm
,
I. B.
,
Heverhagen
,
J. T.
,
Prosperi
,
D.
, and
Parak
,
W. J.
,
2012
, “
Biological Applications of Magnetic Nanoparticles
,”
Chem. Soc. Rev.
,
41
(
11
), pp.
4306
4334
.10.1039/c2cs15337h
24.
Duguet
,
E.
,
Vasseur
,
S.
,
Mornet
,
S.
, and
Devoisselle
,
J. M.
,
2006
, “
Magnetic Nanoparticles and Their Applications in Medicine
,”
Nanomedicine
,
1
(
2
), pp.
157
168
.10.2217/17435889.1.2.157
25.
Lu
,
A. H.
,
Salabas
,
E. E.
, and
Schüth
,
F.
,
2007
, “
Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application
,”
Angew. Chem. Int. Ed. Engl.
,
46
(
8
), pp.
1222
1244
.10.1002/anie.200602866
26.
Fuentes
,
O. P.
,
Trujillo
,
D. M.
,
Sánchez
,
M. E.
,
Abrego-Perez
,
A. L.
,
Osma
,
J. F.
, and
Cruz
,
J. C.
,
2024
, “
Embracing Sustainability in the Industry: A Study of Environmental, Economic, and Exergetic Performances in Large-Scale Production of Magnetite Nanoparticles
,”
ACS Sustainable Chem. Eng.
,
12
(
2
), pp.
760
772
.10.1021/acssuschemeng.3c05000
27.
Guillén-Pacheco
,
A.
,
Ardila
,
Y.
,
Peñaranda
,
P. A.
,
Bejarano
,
M.
,
Rivas
,
R.
,
Osma
,
J. F.
, and
Akle
,
V.
,
2024
, “
Low Toxicity of Magnetite-Based Modified Bionanocomposites With Potential Application for Wastewater Treatment: Evaluation in a Zebrafish Animal Model
,”
Chemosphere
,
358
, p.
142081
.10.1016/j.chemosphere.2024.142081
28.
Vert
,
M.
,
Doi
,
Y.
,
Hellwich
,
K.-H.
,
Hess
,
M.
,
Hodge
,
P.
,
Kubisa
,
P.
,
Rinaudo
,
M.
, and
Schué
,
F.
,
2012
, “
Terminology for Biorelated Polymers and Applications (IUPAC Recommendations 2012)
,”
Pure Appl. Chem.
,
84
(
2
), pp.
377
410
.10.1351/PAC-REC-10-12-04
29.
Huang
,
H.
,
Dong
,
C.
,
Feng
,
W.
,
Wang
,
Y.
,
Huang
,
B.
, and
Chen
,
Y.
,
2022
, “
Biomedical Engineering of Two-Dimensional MXenes
,”
Adv. Drug Delivery Rev.
,
184
, p.
114178
.10.1016/j.addr.2022.114178
30.
Li
,
C.
,
Guo
,
C.
,
Fitzpatrick
,
V.
,
Ibrahim
,
A.
,
Zwierstra
,
M. J.
,
Hanna
,
P.
,
Lechtig
,
A.
,
Nazarian
,
A.
,
Lin
,
S. J.
, and
Kaplan
,
D. L.
,
2019
, “
Design of Biodegradable, Implantable Devices Towards Clinical Translation
,”
Nat. Rev. Mater.
,
5
(
1
), pp.
61
81
.10.1038/s41578-019-0150-z
31.
Ye
,
M.
,
Zhou
,
Y.
,
Zhao
,
H.
,
Wang
,
Z.
,
Nelson
,
B. J.
, and
Wang
,
X.
,
2023
, “
A Review of Soft Microrobots: Material, Fabrication, and Actuation
,”
Adv. Intell. Syst.
,
5
(
11
), p.
2300311
.10.1002/aisy.202300311
32.
Li
,
J.
, and
Yu
,
J.
,
2023
, “
Biodegradable Microrobots and Their Biomedical Applications: A Review
,”
Nanomaterials
,
13
(
10
), p.
1590
.10.3390/nano13101590
33.
Hutmacher
,
D. W.
,
Goh
,
J. C. H.
, and
Teoh
,
S. H.
,
2001
, “
An Introduction to Biodegradable Materials for Tissue Engineering Applications
,”
Ann. Acad. Med. Singapore
,
30
(
2
), pp.
183
191
.https://www.annals.edu.sg/pdf_0301/gohj.pdf
34.
Park
,
J.
,
Jin
,
C.
,
Lee
,
S.
,
Kim
,
J. Y.
, and
Choi
,
H.
,
2019
, “
Magnetically Actuated Degradable Microrobots for Actively Controlled Drug Release and Hyperthermia Therapy
,”
Adv. Healthcare Mater.
,
8
(
16
), p.
1900213
.10.1002/adhm.201900213
35.
Sun
,
H. C. M.
,
Liao
,
P.
,
Wei
,
T.
,
Zhang
,
L.
, and
Sun
,
D.
,
2020
, “
Magnetically Powered Biodegradable Microswimmers
,”
Micromachines
,
11
(
4
), p.
404
.10.3390/mi11040404
36.
Peters
,
C.
,
Hoop
,
M.
,
Pané
,
S.
,
Nelson
,
B. J.
, and
Hierold
,
C.
,
2016
, “
Degradable Magnetic Composites for Minimally Invasive Interventions: Device Fabrication, Targeted Drug Delivery, and Cytotoxicity Tests
,”
Adv. Mater.
,
28
(
3
), pp.
533
538
.10.1002/adma.201503112
37.
Heller
,
C.
,
Schwentenwein
,
M.
,
Russmueller
,
G.
,
Varga
,
F.
,
Stampfl
,
J.
, and
Liska
,
R.
,
2009
, “
Vinyl Esters: Low Cytotoxicity Monomers for the Fabrication of Biocompatible 3D Scaffolds by Lithography Based Additive Manufacturing
,”
J. Polym. Sci. A: Polym. Chem.
,
47
(
24
), pp.
6941
6954
.10.1002/pola.23734
38.
Dong
,
M.
,
Wang
,
X.
,
Chen
,
X. Z.
,
Mushtaq
,
F.
,
Deng
,
S.
,
Zhu
,
C.
,
Torlakcik
,
H.
, et al.,
2020
, “
3D‐Printed Soft Magnetoelectric Microswimmers for Delivery and Differentiation of Neuron‐Like Cells
,”
Adv. Funct. Mater.
,
30
(
17
), p.
1910323
.10.1002/adfm.201910323
39.
Hou
,
Y.
,
Wang
,
H.
,
Zhong
,
S.
,
Qiu
,
Y.
,
Shi
,
Q.
,
Sun
,
T.
,
Huang
,
Q.
, and
Fukuda
,
T.
,
2023
, “
Design and Control of a Surface-Dimple-Optimized Helical Microdrill for Motions in High-Viscosity Fluids
,”
IEEE ASME Trans. Mechatron.
,
28
(
1
), pp.
429
439
.10.1109/TMECH.2022.3201012
40.
Terzopoulou
,
A.
,
Wang
,
X.
,
Chen
,
X. Z.
,
Palacios-Corella
,
M.
,
Pujante
,
C.
,
Herrero-Martín
,
J.
,
Qin
,
X. H.
, et al.,
2020
, “
Biodegradable Metal–Organic Framework‐Based Microrobots (MOFBOTs)
,”
Adv. Healthcare Mater.
,
9
(
20
), p.
2001031
.10.1002/adhm.202001031
41.
Wang
,
X.
,
Qin
,
X. H.
,
Hu
,
C.
,
Terzopoulou
,
A.
,
Chen
,
X. Z.
,
Huang
,
T. Y.
,
Maniura-Weber
,
K.
,
Salvador Pané
,
S.
, and
Nelson
,
B.
,
2018
, “
3D Printed Enzymatically Biodegradable Soft Helical Microswimmers
,”
Adv. Funct. Mater.
,
28
(
45
), p.
1804107
.10.1002/adfm.201804107
42.
Vaes
,
G.
,
1980
, “
Cell-to-Cell Interactions in the Secretion of Enzymes of Connective-Tissue Breakdown, Collagenase and Proteoglycan-Degrading Neutral Proteases—A Review
,”
Agents Actions
,
10
(
6
), pp.
474
485
.10.1007/BF02024145
43.
Kim
,
D.
,
Lee
,
H.
,
Kwon
,
S.
,
Choi
,
H.
, and
Park
,
S.
,
2019
, “
Magnetic Nano-Particles Retrievable Biodegradable Hydrogel Microrobot
,”
Sens. Actuators B: Chem.
,
289
, pp.
65
77
.10.1016/j.snb.2019.03.030
44.
Kim
,
J.
,
Jeon
,
S.
,
Lee
,
J.
,
Lee
,
S.
,
Lee
,
J.
,
Jeon
,
B. O.
,
Jang
,
J.
, and
Choi
,
H.
,
2018
, “
A Simple and Rapid Fabrication Method for Biodegradable Drug-Encapsulating Microrobots Using Laser Micromachining, and Characterization Thereof
,”
Sens. Actuators B: Chem.
,
266
, pp.
276
287
.10.1016/j.snb.2018.03.033
45.
Zahn
,
D.
,
Weidner
,
A.
,
Saatchi
,
K.
,
Häfeli
,
U. O.
, and
Dutz
,
S.
,
2019
, “
Biodegradable Magnetic Microspheres for Drug Targeting, Temperature Controlled Drug Release, and Hyperthermia
,”
Curr. Dir. Biomed. Eng.
,
5
(
1
), pp.
161
164
.10.1515/cdbme-2019-0041
46.
Yang
,
R.
,
Zhu
,
S.
,
Zhang
,
L.
,
Niu
,
F.
, and
Liu
,
S.
,
2021
, “
Magnetic Microswimmers With Infrared‐Induced Shape Transformation
,”
Micro Nano Lett.
,
16
(
12
), pp.
582
590
.10.1049/mna2.12086
47.
Pacheco
,
M.
,
Mayorga-Martinez
,
C.
,
Viktorova
,
J.
,
Ruml
,
T.
,
Escarpa
,
A.
, and
Pumera
,
M.
,
2022
, “
Microrobotic Carrier With Enzymatically Encoded Drug Release in the Presence of Pancreatic Cancer Cells Via Programmed Self-Destruction
,”
Appl. Mater. Today
,
27
, p.
101494
.10.1016/j.apmt.2022.101494
48.
Zhao
,
P.
,
Qu
,
F.
,
Fu
,
H.
,
Zhao
,
J.
,
Guo
,
J.
,
Xu
,
J.
,
Ho
,
Y. P.
,
Chan
,
M. L.
, and
Bian
,
L.
,
2023
, “
Water-Immiscible Coacervate as a Liquid Magnetic Robot for Intravascular Navigation
,”
J. Am. Chem. Soc.
,
145
(
6
), pp.
3312
3317
.10.1021/jacs.2c13287
49.
Lee
,
H.
,
Choi
,
H.
,
Lee
,
M.
, and
Park
,
S.
,
2018
, “
Preliminary Study on Alginate/NIPAM Hydrogel-Based Soft Microrobot for Controlled Drug Delivery Using Electromagnetic Actuation and Near-Infrared Stimulus
,”
Biomed. Microdevices
,
20
(
4
), p.
103
.10.1007/s10544-018-0344-y
50.
Mair
,
L. O.
,
Chowdhury
,
S.
,
Paredes-Juarez
,
G. A.
,
Guix
,
M.
,
Bi
,
C.
,
Johnson
,
B.
,
English
,
B. W.
, et al.,
2019
, “
Magnetically Aligned Nanorods in Alginate Capsules (MANiACs): Soft Matter Tumbling Robots for Manipulation and Drug Delivery
,”
Micromachines
,
10
(
4
), p.
230
.10.3390/mi10040230
51.
Lin
,
S.
,
Sangaj
,
N.
,
Razafiarison
,
T.
,
Zhang
,
C.
, and
Varghese
,
S.
,
2011
, “
Influence of Physical Properties of Biomaterials on Cellular Behavior
,”
Pharm. Res.
,
28
(
6
), pp.
1422
1430
.10.1007/s11095-011-0378-9
52.
Buchroithner
,
B.
,
Hartmann
,
D.
,
Mayr
,
S.
,
Oh
,
Y. J.
,
Sivun
,
D.
,
Karner
,
A.
,
Buchegger
,
B.
, et al.,
2020
, “
3D Multiphoton Lithography Using Biocompatible Polymers With Specific Mechanical Properties
,”
Nanoscale Adv.
,
2
(
6
), pp.
2422
2428
.10.1039/D0NA00154F
53.
Belqat
,
M.
,
Wu
,
X.
,
Gomez
,
L. P. C.
,
Malval
,
J. P.
,
Dominici
,
S.
,
Leuschel
,
B.
,
Spangenberg
,
A.
, and
Mougin
,
K.
,
2021
, “
Tuning Nanomechanical Properties of Microstructures Made by 3D Direct Laser Writing
,”
Addit. Manuf.
,
47
, p.
102232
.10.1016/j.addma.2021.102232
54.
Wu
,
Y.
,
Xiang
,
Y.
,
Fang
,
J.
,
Li
,
X.
,
Lin
,
Z.
,
Dai
,
G.
,
Yin
,
J.
,
Wei
,
P.
, and
Zhang
,
D.
,
2019
, “
The Influence of the Stiffness of GelMA Substrate on the Outgrowth of PC12 Cells
,”
Biosci. Rep.
,
39
(
1
), p.
BSR20181748
.10.1042/BSR20181748
55.
Marques
,
D. R.
,
Santos
,
L. A. D.
,
Schopf
,
L. F.
, and
Fraga
,
J. C. S. D.
,
2013
, “
Analysis of Poly (Lactic-Co-Glycolic Acid)/Poly (Isoprene) Polymeric Blend for Application as Biomaterial
,”
Polímeros
,
23
(
5
), pp.
579
584
.10.4322/polimeros.2013.099
56.
Jain
,
N.
,
Singh
,
V. K.
, and
Chauhan
,
S.
,
2017
, “
A Review on Mechanical and Water Absorption Properties of Polyvinyl Alcohol Based Composites/Films
,”
J. Mech. Behav. Biomed. Mater.
,
26
(
5–6
), pp.
213
222
.10.1515/jmbm-2017-0027
57.
Eshraghi
,
S.
, and
Das
,
S.
,
2010
, “
Mechanical and Microstructural Properties of Polycaprolactone Scaffolds With 1-D, 2-D, and 3-D Orthogonally Oriented Porous Architectures Produced by Selective Laser Sintering
,”
Acta Biomater.
,
6
(
7
), pp.
2467
2476
.10.1016/j.actbio.2010.02.002
58.
MakeItFrom.com, 2020, “
Polyetherimide
,” MakeItFrom.com, Lake Mary, FL, accessed Mar. 1, 2024, https://www.makeitfrom.com/material-properties/Polyetherimide-PEI
59.
Iza
,
M.
,
Stoianovici
,
G.
,
Viora
,
L.
,
Grossiord
,
J. L.
, and
Couarraze
,
G.
,
1998
, “
Hydrogels of Poly (Ethylene Glycol): Mechanical Characterization and Release of a Model Drug
,”
J. Controlled Release
,
52
(
1–2
), pp.
41
51
.10.1016/S0168-3659(97)00191-0
60.
Ikehata
,
A.
, and
Ushiki
,
H.
,
2002
, “
Effect of Salt on the Elastic Modulus of Poly (N-Isopropylacrylamide) Gels
,”
Polymer
,
43
(
7
), pp.
2089
2094
.10.1016/S0032-3861(01)00791-1
61.
Santos Rosalem
,
G.
,
Gonzales Torres
,
L. A.
,
de Las Casas
,
E. B.
,
Mathias
,
F. A. S.
,
Ruiz
,
J. C.
, and
Carvalho
,
M. G. R.
,
2020
, “
Microfluidics and Organ-on-a-Chip Technologies: A Systematic Review of the Methods Used to Mimic Bone Marrow
,”
PLoS One
,
15
(
12
), p.
e0243840
.10.1371/journal.pone.0243840
62.
Zhang
,
B.
,
Galluzzi
,
M.
,
Zhou
,
G.
, and
Yu
,
H.
,
2023
, “
A Study of Macrophage Mechanical Properties and Functional Modulation Based on the Young's Modulus of PLGA-PEG Fibers
,”
Biomater. Sci.
,
11
(
1
), pp.
153
161
.10.1039/D2BM01351G
63.
Yan
,
X.
,
Xu
,
J.
,
Zhou
,
Q.
,
Jin
,
D.
,
Vong
,
C. I.
,
Feng
,
Q.
,
Ng
,
D. H.
,
Bian
,
L.
, and
Zhang
,
L.
,
2019
, “
Molecular Cargo Delivery Using Multicellular Magnetic Microswimmers
,”
Appl. Mater. Today
,
15
, pp.
242
251
.10.1016/j.apmt.2019.02.006
64.
Xie
,
L.
,
Pang
,
X.
,
Yan
,
X.
,
Dai
,
Q.
,
Lin
,
H.
,
Ye
,
J.
,
Cheng
,
Y.
, et al.,
2020
, “
Photoacoustic Imaging-Trackable Magnetic Microswimmers for Pathogenic Bacterial Infection Treatment
,”
ACS Nano
,
14
(
3
), pp.
2880
2893
.10.1021/acsnano.9b06731
65.
Yan
,
X.
,
Zhou
,
Q.
,
Yu
,
J.
,
Xu
,
T.
,
Deng
,
Y.
,
Tang
,
T.
,
Feng
,
Q.
, et al.,
2015
, “
Magnetite Nanostructured Porous Hollow Helical Microswimmers for Targeted Delivery
,”
Adv. Funct. Mater.
,
25
(
33
), pp.
5333
5342
.10.1002/adfm.201502248
66.
Carlsen
,
R. W.
,
Edwards
,
M. R.
,
Zhuang
,
J.
,
Pacoret
,
C.
, and
Sitti
,
M.
,
2014
, “
Magnetic Steering Control of Multi-Cellular Bio-Hybrid Microswimmers
,”
Lab Chip
,
14
(
19
), pp.
3850
3859
.10.1039/C4LC00707G
67.
Zhang
,
Y.
,
Zhang
,
L.
,
Yang
,
L.
,
Vong
,
C. I.
,
Chan
,
K. F.
,
Wu
,
W. K. K.
,
Kwong
,
T. N. Y.
, et al.,
2019
, “
Real-Time Tracking of Fluorescent Magnetic Spore-Based Microrobots for Remote Detection of C. diff Toxins
,”
Sci. Adv.
,
5
(
1
), p.
eaau9650
.10.1126/sciadv.aau9650
68.
Kim
,
J.
,
Park
,
H.
, and
Yoon
,
C.
,
2022
, “
Advances in Biodegradable Soft Robots
,”
Polymers
,
14
(
21
), p.
4574
.10.3390/polym14214574
69.
Mushtaq
,
F.
,
Chen
,
X.
,
Staufert
,
S.
,
Torlakcik
,
H.
,
Wang
,
X.
,
Hoop
,
M.
,
Gerber
,
A.
, et al.,
2019
, “
On-the-Fly Catalytic Degradation of Organic Pollutants Using Magneto-Photoresponsive Bacteria-Templated Microcleaners
,”
J. Mater. Chem. A
,
7
(
43
), pp.
24847
24856
.10.1039/C9TA06290D
70.
Steager
,
E. B.
,
Selman Sakar
,
M.
,
Magee
,
C.
,
Kennedy
,
M.
,
Cowley
,
A.
, and
Kumar
,
V.
,
2013
, “
Automated Biomanipulation of Single Cells Using Magnetic Microrobots
,”
Int. J. Rob. Res.
,
32
(
3
), pp.
346
359
.10.1177/0278364912472381
71.
Zhang
,
L.
,
Abbott
,
J. J.
,
Dong
,
L.
,
Peyer
,
K. E.
,
Kratochvil
,
B. E.
,
Zhang
,
H.
,
Bergeles
,
C.
, and
Nelson
,
B. J.
,
2009
, “
Characterizing the Swimming Properties of Artificial Bacterial Flagella
,”
Nano Lett.
,
9
(
10
), pp.
3663
3667
.10.1021/nl901869j
72.
Gao
,
W.
,
Sattayasamitsathit
,
S.
,
Manesh
,
K. M.
,
Weihs
,
D.
, and
Wang
,
J.
,
2010
, “
Magnetically Powered Flexible Metal Nanowire Motors
,”
J. Am. Chem. Soc.
,
132
(
41
), pp.
14403
14405
.10.1021/ja1072349
73.
Li
,
T.
,
Li
,
J.
,
Zhang
,
H.
,
Chang
,
X.
,
Song
,
W.
,
Hu
,
Y.
,
Shao
,
G.
, et al.,
2016
, “
Magnetically Propelled Fish‐Like Nanoswimmers
,”
Small
,
12
(
44
), pp.
6098
6105
.10.1002/smll.201601846
74.
Kim
,
S.
,
Lee
,
S.
,
Lee
,
J.
,
Nelson
,
B. J.
,
Zhang
,
L.
, and
Choi
,
H.
,
2016
, “
Fabrication and Manipulation of Ciliary Microrobots With Non-Reciprocal Magnetic Actuation
,”
Sci. Rep.
,
6
(
1
), p.
30713
.10.1038/srep30713
75.
Qiu
,
T.
,
Lee
,
T.-C.
,
Mark
,
A. G.
,
Morozov
,
K. I.
,
Münster
,
R.
,
Mierka
,
O.
,
Turek
,
S.
,
Leshansky
,
A. M.
, and
Fischer
,
P.
,
2014
, “
Swimming by Reciprocal Motion at Low Reynolds Number
,”
Nat. Commun.
,
5
(
1
), p.
5119
.10.1038/ncomms6119
76.
Kline
,
T. R.
,
Paxton
,
W. F.
,
Mallouk
,
T. E.
, and
Sen
,
A.
,
2005
, “
Catalytic Nanomotors: Remote‐Controlled Autonomous Movement of Striped Metallic Nanorods
,”
Angew. Chem. Int. Ed. Engl.
,
44
(
5
), pp.
744
746
.10.1002/anie.200461890
77.
Peyer
,
K. E.
,
Zhang
,
L.
, and
Nelson
,
B. J.
,
2013
, “
Bio-Inspired Magnetic Swimming Microrobots for Biomedical Applications
,”
Nanoscale
,
5
(
4
), pp.
1259
1272
.10.1039/C2NR32554C
78.
Berg
,
H. C.
, and
Anderson
,
R. A.
,
1973
, “
Bacteria Swim by Rotating Their Flagellar Filaments
,”
Nature
,
245
(
5425
), pp.
380
382
.10.1038/245380a0
79.
Purcell
,
E. M.
,
1977
, “
Life at Low Reynolds Number
,”
Am. J. Phys.
,
45
(
1
), pp.
3
11
.10.1119/1.10903
80.
Bell
,
D. J.
,
Leutenegger
,
S.
,
Hammar
,
K. M.
,
Dong
,
L. X.
, and
Nelson
,
B. J.
,
2007
, “
Flagella-Like Propulsion for Microrobots Using a Nanocoil and a Rotating Electromagnetic Field
,”
Proceedings of the 2007 IEEE International Conference on Robotics and Automation
, Rome, Italy, Apr. 10–14, pp.
1128
1133
.10.1109/ROBOT.2007.363136
81.
Zhang
,
L.
,
Peyer
,
K. E.
,
Petit
,
T.
,
Kratochvil
,
B. E.
, and
Nelson
,
B. J.
,
2010
, “
Motion Control of Artificial Bacterial Flagella
,”
Tenth IEEE International Conference on Nanotechnology
, Ilsan, South Korea, Aug. 17–20, pp.
893
896
.10.1109/NANO.2010.5697839
82.
Zhang
,
L.
,
Abbott
,
J. J.
,
Dong
,
L.
,
Kratochvil
,
B. E.
,
Bell
,
D.
, and
Nelson
,
B. J.
,
2009
, “
Artificial Bacterial Flagella: Fabrication and Magnetic Control
,”
Appl. Phys. Lett.
,
94
(
6
), p.
064107
.10.1063/1.3079655
83.
Zhang
,
L.
,
Peyer
,
K. E.
, and
Nelson
,
B. J.
,
2010
, “
Artificial Bacterial Flagella for Micromanipulation
,”
Lab Chip
,
10
(
17
), pp.
2203
2215
.10.1039/c004450b
84.
Ghosh
,
A.
, and
Fischer
,
P.
,
2009
, “
Controlled Propulsion of Artificial Magnetic Nanostructured Propellers
,”
Nano Lett.
,
9
(
6
), pp.
2243
2245
.10.1021/nl900186w
85.
Hwang
,
G.
,
Haliyo
,
S.
, and
Régnier
,
S.
,
2010
, “
Remotely Powered Propulsion of Helical Nanobelts
,”
Robotics: Science and Systems
, Zaragoza, Spain, June 27–30, pp. 1–8.https://www.roboticsproceedings.org/rss06/p39.pdf
86.
Hwang
,
G.
,
Braive
,
R.
,
Couraud
,
L.
,
Cavanna
,
A.
,
Abdelkarim
,
O.
,
Robert-Philip
,
I.
,
Beveratos
,
A.
,
Sagnes
,
I.
,
Haliyo
,
S.
, and
Régnier
,
S.
,
2011
, “
Electro-Osmotic Propulsion of Helical Nanobelt Swimmers
,”
Int. J. Rob. Res.
,
30
(
7
), pp.
806
819
.10.1177/0278364911407231
87.
Khalil
,
I. S.
,
Tabak
,
A. F.
,
Hamed
,
Y.
,
Tawakol
,
M.
,
Klingner
,
A.
,
El Gohary
,
N.
,
Mizaikoff
,
B.
, and
Sitti
,
M.
,
2018
, “
Independent Actuation of Two-Tailed Microrobots
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
1703
1710
.10.1109/LRA.2018.2801793
88.
Hamed
,
Y.
,
Tawakol
,
M.
,
El Zahar
,
L.
,
Klingner
,
A.
,
Abdennadher
,
S.
, and
Khalil
,
I. S.
,
2018
, “
Realization of a Soft Microrobot With Multiple Flexible Flagella
,” 2018 Seventh IEEE International Conference on Biomedical Robotics and Biomechatronics (
Biorob
), Enschede, The Netherlands, Aug. 26–29, pp.
61
66
.10.1109/BIOROB.2018.8488008
89.
Xu
,
T.
,
Gilgueng
,
H.
,
Nicolas
,
A.
, and
Stéphane
,
R.
,
2014
, “
Modeling and Swimming Property Characterizations of Scaled-Up Helical Microswimmers
,”
IEEE ASME Trans. Mechatron.
,
19
(
3
), pp.
1069
1079
.10.1109/TMECH.2013.2269802
90.
Ceylan
,
H.
,
Yasa
,
I. C.
,
Yasa
,
O.
,
Tabak
,
A.
,
Giltinan
,
J.
, and
Sitti
,
M.
,
2019
, “
3D-Printed Biodegradable Microswimmer for Theranostic Cargo Delivery and Release
,”
ACS Nano
,
13
(
3
), pp.
3353
3362
.10.1021/acsnano.8b09233
91.
Pak
,
O. S.
,
Gao
,
W.
,
Wang
,
J.
, and
Lauga
,
E.
,
2011
, “
High-Speed Propulsion of Flexible Nanowire Motors: Theory and Experiments
,”
Soft Matter
,
7
(
18
), pp.
8169
8181
.10.1039/c1sm05503h
92.
Dreyfus
,
R.
,
Baudry
,
J.
,
Roper
,
M. L.
,
Fermigier
,
M.
,
Stone
,
H. A.
, and
Bibette
,
J.
,
2005
, “
Microscopic Artificial Swimmers
,”
Nature
,
437
(
7060
), pp.
862
865
.10.1038/nature04090
93.
Ludwig
,
W.
,
1930
, “
Zur Theorie der Flimmerbewegung (Dynamik, Nutzeffekt, Energiebilanz)
,”
J. Comp. Physiol. A: Neuroethol. Sens. Neural Behav. Physiol.
,
13
(
3
), pp.
397
504
.10.1007/BF00338171
94.
Shah
,
A. S.
,
Ben-Shahar
,
Y.
,
Moninger
,
T. O.
,
Kline
,
J. N.
, and
Welsh
,
M. J.
,
2009
, “
Motile Cilia of Human Airway Epithelia Are Chemosensory
,”
Science
,
325
(
5944
), pp.
1131
1134
.10.1126/science.1173869
95.
Ghanbari
,
A.
, and
Bahrami
,
M.
,
2011
, “
A Novel Swimming Microrobot Based on Artificial Cilia for Biomedical Applications
,”
J. Intell. Rob. Syst.
,
63
(
3–4
), pp.
399
416
.10.1007/s10846-010-9516-6
96.
Dodampegama
,
S.
,
Mudugamuwa
,
A.
,
Konara
,
M.
,
Perera
,
N.
,
De Silva
,
D.
,
Roshan
,
U.
,
Amarasinghe
,
R.
,
Jayaweera
,
N.
, and
Tamura
,
H.
,
2022
, “
A Review on the Motion of Magnetically Actuated Bio-Inspired Microrobots
,”
Appl. Sci.
,
12
(
22
), p.
11542
.10.3390/app122211542
97.
Xing
,
L.
,
Liao
,
P.
,
Mo
,
H.
,
Li
,
D.
, and
Sun
,
D.
,
2021
, “
Preformation Characterization of a Torque-Driven Magnetic Microswimmer With Multi-Segment Structure
,”
IEEE Access
,
9
, pp.
29279
29292
.10.1109/ACCESS.2021.3058527
98.
Palagi
,
S.
, and
Fischer
,
P.
,
2018
, “
Bioinspired Microrobots
,”
Nat. Rev. Mater.
,
3
(
6
), pp.
113
124
.10.1038/s41578-018-0016-9
99.
Ng
,
C. S. X.
,
Tan
,
M. W. M.
,
Xu
,
C.
,
Yang
,
Z.
,
Lee
,
P. S.
, and
Lum
,
G. Z.
,
2021
, “
Locomotion of Miniature Soft Robots
,”
Adv. Mater.
,
33
(
19
), p.
2003558
.10.1002/adma.202003558
100.
Hussein
,
H.
,
Damdam
,
A.
,
Ren
,
L.
,
Obeid Charrouf
,
Y.
,
Challita
,
J.
,
Zwain
,
M.
, and
Fariborzi
,
H.
,
2023
, “
Actuation of Mobile Microbots: A Review
,”
Adv. Intell. Syst.
,
5
(
9
), p.
2300168
.10.1002/aisy.202300168
101.
Wang
,
X.
,
Hu
,
C.
,
Pané
,
S.
, and
Nelson
,
B. J.
,
2022
, “
Dynamic Modeling of Magnetic Helical Microrobots
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
1682
1688
.10.1109/LRA.2020.3049112
102.
Huang
,
H. W.
,
Uslu
,
F. E.
,
Katsamba
,
P.
,
Lauga
,
E.
,
Sakar
,
M. S.
, and
Nelson
,
B. J.
,
2019
, “
Adaptive Locomotion of Artificial Microswimmers
,”
Sci. Adv.
,
5
(
1
), p.
eaau1532
.10.1126/sciadv.aau1532
103.
Huang
,
T. Y.
,
Sakar
,
M. S.
,
Mao
,
A.
,
Petruska
,
A. J.
,
Qiu
,
F.
,
Chen
,
X. B.
,
Kennedy
,
S.
,
Mooney
,
D.
, and
Nelson
,
B. J.
,
2015
, “
3D Printed Microtransporters: Compound Micromachines for Spatiotemporally Controlled Delivery of Therapeutic Agents
,”
Adv. Mater.
,
27
(
42
), pp.
6644
6650
.10.1002/adma.201503095
104.
Huang
,
T. Y.
,
Qiu
,
F.
,
Tung
,
H. W.
,
Peyer
,
K. E.
,
Shamsudhin
,
N.
,
Pokki
,
J.
,
Zhang
,
L.
,
Chen
,
X. B.
,
Nelson
,
B. J.
, and
Sakar
,
M. S.
,
2014
, “
Cooperative Manipulation and Transport of Microobjects Using Multiple Helical Microcarriers
,”
RSC Adv.
,
4
(
51
), pp.
26771
26776
.10.1039/C4RA02260B
105.
Dong
,
X.
, and
Sitti
,
M.
,
2020
, “
Controlling Two-Dimensional Collective Formation and Cooperative Behavior of Magnetic Microrobot Swarms
,”
Int. J. Rob. Res.
,
39
(
5
), pp.
617
638
.10.1177/0278364920903107
106.
Xie
,
H.
,
Sun
,
M.
,
Fan
,
X.
,
Lin
,
Z.
,
Chen
,
W.
,
Wang
,
L.
,
Dong
,
L.
, and
He
,
Q.
,
2019
, “
Reconfigurable Magnetic Microrobot Swarm: Multimode Transformation, Locomotion, and Manipulation
,”
Sci. Rob.
,
4
(
28
), p.
eaav8006
.10.1126/scirobotics.aav8006
107.
Behrens
,
M. R.
, and
Ruder
,
W. C.
,
2022
, “
Smart Magnetic Microrobots Learn to Swim With Deep Reinforcement Learning
,”
Adv. Intell. Syst.
,
4
(
10
), p.
2200023
.10.1002/aisy.202200023
108.
Hou
,
Y.
,
Wang
,
H.
,
Fu
,
R.
,
Wang
,
X.
,
Yu
,
J.
,
Zhang
,
S.
,
Huang
,
Q.
,
Sun
,
Y.
, and
Fukuda
,
T.
,
2023
, “
A Review on Microrobots Driven by Optical and Magnetic Fields
,”
Lab Chip
,
23
(
5
), pp.
848
868
.10.1039/D2LC00573E
109.
Pironneau
,
O.
,
1973
, “
On Optimum Profiles in Stokes Flow
,”
J. Fluid Mech.
,
59
(
1
), pp.
117
128
.10.1017/S002211207300145X
110.
Bourot
,
J. M.
,
1974
, “
On the Numerical Computation of the Optimum Profile in Stokes Flow
,”
J. Fluid Mech.
,
65
(
3
), pp.
513
515
.10.1017/S0022112074001510
111.
Diller
,
E.
, and
Sitti
,
M.
,
2014
, “
Three‐Dimensional Programmable Assembly by Untethered Magnetic Robotic Micro‐Grippers
,”
Adv. Funct. Mater.
,
24
(
28
), pp.
4397
4404
.10.1002/adfm.201400275
112.
Wang
,
Q.
,
Chan
,
K. F.
,
Schweizer
,
K.
,
Du
,
X.
,
Jin
,
D.
,
Yu
,
S. C. H.
,
Nelson
,
B. J.
, and
Zhang
,
L.
,
2021
, “
Ultrasound Doppler-Guided Real-Time Navigation of a Magnetic Microswarm for Active Endovascular Delivery
,”
Sci. Adv.
,
7
(
9
), p.
eabe5914
.10.1126/sciadv.abe5914
113.
Kummer
,
M. P.
,
Abbott
,
J. J.
,
Kratochvil
,
B. E.
,
Borer
,
R.
,
Sengul
,
A.
, and
Nelson
,
B. J.
,
2010
, “
OctoMag: An Electromagnetic System for 5-DOF Wireless Micromanipulation
,”
IEEE Trans. Rob.
,
26
(
6
), pp.
1006
1017
.10.1109/TRO.2010.2073030
114.
Erni
,
S.
,
Schürle
,
S.
,
Fakhraee
,
A.
,
Kratochvil
,
B. E.
, and
Nelson
,
B. J.
,
2013
, “
Comparison, Optimization, and Limitations of Magnetic Manipulation Systems
,”
J. Micro-Bio Rob.
,
8
(
3–4
), pp.
107
120
.10.1007/s12213-013-0070-8
115.
Petruska
,
A. J.
,
2020
, “
Open-Loop Orientation Control Using Dynamic Magnetic Fields
,”
IEEE Rob. Autom. Lett.
,
5
(
4
), pp.
5472
5476
.10.1109/LRA.2020.3009070
116.
Sitt
,
A.
,
Soukupova
,
J.
,
Miller
,
D.
,
Verdi
,
D.
,
Zboril
,
R.
,
Hess
,
H.
, and
Lahann
,
J.
,
2016
, “
Microscale Rockets and Picoliter Containers Engineered From Electrospun Polymeric Microtubes
,”
Small
,
12
(
11
), pp.
1432
1439
.10.1002/smll.201503467
117.
Wang
,
D.
,
Zhao
,
G.
,
Chen
,
C.
,
Zhang
,
H.
,
Duan
,
R.
,
Zhang
,
D.
,
Li
,
M.
, and
Dong
,
B.
,
2019
, “
One-Step Fabrication of Dual Optically/Magnetically Modulated Walnut-Like Micromotor
,”
Langmuir
,
35
(
7
), pp.
2801
2807
.10.1021/acs.langmuir.8b02904
118.
Su
,
Y.
,
Qiu
,
T.
,
Song
,
W.
,
Han
,
X.
,
Sun
,
M.
,
Wang
,
Z.
,
Xie
,
H.
,
Dong
,
M.
, and
Chen
,
M.
,
2021
, “
Melt Electrospinning Writing of Magnetic Microrobots
,”
Adv. Sci.
,
8
(
3
), p.
2003177
.10.1002/advs.202003177
119.
Tan
,
L.
, and
Cappelleri
,
D. J.
,
2023
, “
Design, Fabrication, and Characterization of a Helical Adaptive Multi-Material Microrobot (HAMMR)
,”
IEEE Rob. Autom. Lett.
,
8
(
3
), pp.
1723
1730
.10.1109/LRA.2023.3242164
120.
Wei
,
T.
,
Liu
,
J.
,
Li
,
D.
,
Chen
,
S.
,
Zhang
,
Y.
,
Li
,
J.
,
Fan
,
L.
, et al.,
2020
, “
Development of Magnet‐Driven and Image‐Guided Degradable Microrobots for the Precise Delivery of Engineered Stem Cells for Cancer Therapy
,”
Small
,
16
(
41
), p.
1906908
.10.1002/smll.201906908
121.
Limberg
,
D. K.
,
Kang
,
J. H.
, and
Hayward
,
R. C.
,
2022
, “
Triplet–Triplet Annihilation Photopolymerization for High-Resolution 3D Printing
,”
J. Am. Chem. Soc.
,
144
(
12
), pp.
5226
5232
.10.1021/jacs.1c11022
122.
Bozuyuk
,
U.
,
Yasa
,
O.
,
Yasa
,
C.
,
Ceylan
,
H.
,
Kizilel
,
S.
, and
Sitti
,
M.
,
2018
, “
Light-Triggered Drug Release From 3D-Printed Magnetic Chitosan Microswimmers
,”
ACS Nano
,
12
(
9
), pp.
9617
9625
.10.1021/acsnano.8b05997
123.
Ussia
,
M.
,
Urso
,
M.
,
Kratochvilova
,
M.
,
Navratil
,
J.
,
Balvan
,
J.
,
Mayorga‐Martinez
,
C. C.
,
Vyskocil
,
J.
,
Masarik
,
M.
, and
Pumera
,
M.
,
2023
, “
Magnetically Driven Self‐Degrading Zinc‐Containing Cystine Microrobots for Treatment of Prostate Cancer
,”
Small
,
19
(
17
), p.
2208259
.10.1002/smll.202208259
124.
Martel
,
S.
,
Mohammadi
,
M.
,
Felfoul
,
O.
,
Lu
,
Z.
, and
Pouponneau
,
P.
,
2009
, “
Flagellated Magnetotactic Bacteria as Controlled MRI-Trackable Propulsion and Steering Systems for Medical Nanorobots Operating in the Human Microvasculature
,”
Int. J. Rob. Res.
,
28
(
4
), pp.
571
582
.10.1177/0278364908100924
125.
Magdanz
,
V.
,
Sanchez
,
S.
, and
Schmidt
,
O.
,
2013
, “
Development of a Sperm‐Flagella Driven Micro‐Bio‐Robot
,”
Adv. Mater.
,
25
(
45
), pp.
6581
6588
.10.1002/adma.201302544
126.
Yasa
,
O.
,
Erkoc
,
P.
,
Alapan
,
Y.
, and
Sitti
,
M.
,
2018
, “
Microalga‐Powered Microswimmers Toward Active Cargo Delivery
,”
Adv. Mater.
,
30
(
45
), p.
1804130
.10.1002/adma.201804130
127.
Hawkeye
,
M. M.
, and
Brett
,
M. J.
,
2007
, “
Glancing Angle Deposition: Fabrication, Properties, and Applications of Micro- and Nanostructured Thin Films
,”
J. Vac. Sci. Technol. A
,
25
(
5
), pp.
1317
1335
.10.1116/1.2764082
128.
Brett
,
M. J.
, and
Hawkeye
,
M. M.
,
2008
, “
New Materials at a Glance
,”
Science
,
319
(
5867
), pp.
1192
1193
.10.1126/science.1153910
129.
Kadiri
,
V. M.
,
Bussi
,
C.
,
Holle
,
A. W.
,
Son
,
K.
,
Kwon
,
H.
,
Schütz
,
G.
,
Gutierrez
,
M. G.
, and
Fischer
,
P.
,
2020
, “
Biocompatible Magnetic Micro‐ and Nanodevices: Fabrication of FePt Nanopropellers and Cell Transfection
,”
Adv. Mater.
,
32
(
25
), p.
2001114
.10.1002/adma.202001114
130.
Walker
,
D.
,
Käsdorf
,
B. T.
,
Jeong
,
H. H.
,
Lieleg
,
O.
, and
Fischer
,
P.
,
2015
, “
Enzymatically Active Biomimetic Micropropellers for the Penetration of Mucin Gels
,”
Sci. Adv.
,
1
(
11
), p.
e1500501
.10.1126/sciadv.1500501
131.
Wu
,
Z.
,
Troll
,
J.
,
Jeong
,
H. H.
,
Wei
,
Q.
,
Stang
,
M.
,
Ziemssen
,
F.
,
Wang
,
Z.
, et al.,
2018
, “
A Swarm of Slippery Micropropellers Penetrates the Vitreous Body of the Eye
,”
Sci. Adv.
,
4
(
11
), p.
eaat4388
.10.1126/sciadv.aat4388
132.
Schamel
,
D.
,
Mark
,
A. G.
,
Gibbs
,
J. G.
,
Miksch
,
C.
,
Morozov
,
K. I.
,
Leshansky
,
A. M.
, and
Fischer
,
P.
,
2014
, “
Nanopropellers and Their Actuation in Complex Viscoelastic Media
,”
ACS Nano
,
8
(
9
), pp.
8794
8801
.10.1021/nn502360t
133.
Ghosh
,
A.
,
Paria
,
D.
,
Rangarajan
,
G.
, and
Ghosh
,
A.
,
2014
, “
Velocity Fluctuations in Helical Propulsion: How Small Can a Propeller Be
,”
J. Phys. Chem. Lett.
,
5
(
1
), pp.
62
68
.10.1021/jz402186w
134.
Liu
,
L.
,
Yoo
,
S. H.
,
Lee
,
S. A.
, and
Park
,
S.
,
2011
, “
Wet-Chemical Synthesis of Palladium Nanosprings
,”
Nano Lett.
,
11
(
9
), pp.
3979
3982
.10.1021/nl202332x
135.
Li
,
J.
,
Sattayasamitsathit
,
S.
,
Dong
,
R.
,
Gao
,
W.
,
Tam
,
R.
,
Feng
,
X.
,
Ai
,
S.
, and
Wang
,
J.
,
2014
, “
Template Electrosynthesis of Tailored-Made Helical Nanoswimmers
,”
Nanoscale
,
6
(
16
), pp.
9415
9420
.10.1039/C3NR04760A
136.
Hoop
,
M.
,
Shen
,
Y.
,
Chen
,
X. Z.
,
Mushtaq
,
F.
,
Iuliano
,
L. M.
,
Sakar
,
M. S.
,
Petruska
,
A.
,
Loessner
,
M. J.
,
Nelson
,
B. J.
, and
Pané
,
S.
,
2016
, “
Magnetically Driven Silver‐Coated Nanocoils for Efficient Bacterial Contact Killing
,”
Adv. Funct. Mater.
,
26
(
7
), pp.
1063
1069
.10.1002/adfm.201504463
137.
Li
,
J.
,
Angsantikul
,
P.
,
Liu
,
W.
,
Esteban‐Fernández de Ávila
,
B.
,
Chang
,
X.
,
Sandraz
,
E.
,
Liang
,
Y.
, et al.,
2018
, “
Biomimetic Platelet‐Camouflaged Nanorobots for Binding and Isolation of Biological Threats
,”
Adv. Mater.
,
30
(
2
), p.
1704800
.10.1002/adma.201704800
138.
Chen
,
X. Z.
,
Hoop
,
M.
,
Shamsudhin
,
N.
,
Huang
,
T.
,
Özkale
,
B.
,
Li
,
Q.
,
Siringil
,
E.
, et al.,
2017
, “
Hybrid Magnetoelectric Nanowires for Nanorobotic Applications: Fabrication, Magnetoelectric Coupling, and Magnetically Assisted In Vitro Targeted Drug Delivery
,”
Adv. Mater.
,
29
(
8
), p.
1605458
.10.1002/adma.201605458
139.
Jang
,
B.
,
Hong
,
A.
,
Alcantara
,
C.
,
Chatzipirpiridis
,
G.
,
Marti
,
X.
,
Pellicer
,
E.
,
Sort
,
J.
, et al.,
2019
, “
Programmable Locomotion Mechanisms of Nanowires With Semihard Magnetic Properties Near a Surface Boundary
,”
ACS Appl. Mater. Interfaces
,
11
(
3
), pp.
3214
3223
.10.1021/acsami.8b16907
140.
Zhang
,
J.
,
Agramunt-Puig
,
S.
,
Del-Valle
,
N.
,
Navau
,
C.
,
Baro
,
M. D.
,
Estrade
,
S.
,
Peiró
,
F.
, et al.,
2016
, “
Tailoring Staircase-Like Hysteresis Loops in Electrodeposited Trisegmented Magnetic Nanowires: A Strategy Toward Minimization of Interwire Interactions
,”
ACS Appl. Mater. Interfaces
,
8
(
6
), pp.
4109
4117
.10.1021/acsami.5b11747
141.
Mushtaq
,
F.
,
Asani
,
A.
,
Hoop
,
M.
,
Chen
,
X. Z.
,
Ahmed
,
D.
,
Nelson
,
B. J.
, and
Pané
,
S.
,
2016
, “
Highly Efficient Coaxial TiO2‐PtPd Tubular Nanomachines for Photocatalytic Water Purification With Multiple Locomotion Strategies
,”
Adv. Funct. Mater.
,
26
(
38
), pp.
6995
7002
.10.1002/adfm.201602315
142.
Ji
,
F.
,
Li
,
T.
,
Yu
,
S.
,
Wu
,
Z.
, and
Zhang
,
L.
,
2021
, “
Propulsion Gait Analysis and Fluidic Trapping of Swinging Flexible Nanomotors
,”
ACS Nano
,
15
(
3
), pp.
5118
5128
.10.1021/acsnano.0c10269
143.
Li
,
T.
,
Li
,
J.
,
Morozov
,
K. I.
,
Wu
,
Z.
,
Xu
,
T.
,
Rozen
,
I.
,
Leshansky
,
A. M.
,
Li
,
L.
, and
Wang
,
J.
,
2017
, “
Highly Efficient Freestyle Magnetic Nanoswimmer
,”
Nano Lett.
,
17
(
8
), pp.
5092
5098
.10.1021/acs.nanolett.7b02383
144.
Wu
,
J.
,
Jang
,
B.
,
Harduf
,
Y.
,
Chapnik
,
Z.
,
Avci
,
Ö. B.
,
Chen
,
X.
,
Puigmartí-Luis
,
J.
, et al.,
2021
, “
Helical Klinotactic Locomotion of Two‐Link Nanoswimmers With Dual‐Function Drug‐Loaded Soft Polysaccharide Hinges
,”
Adv. Sci.
,
8
(
8
), p.
2004458
.10.1002/advs.202004458
You do not currently have access to this content.