Abstract

Multimaterial design with a combination of solid and foam structures offers a promising avenue for reducing component weight while enhancing their functionalities. However, the complexity of multistage manufacturing processes poses significant challenges to adopting such approaches. To address these challenges, this paper introduces an innovative concept known as Electromagnetic Forming Injection Foaming (EFIF), which integrates injection molding, forming, and foaming processes into a single hybrid process. This process begins with a simultaneous filling-forming phase, followed by supercritical fluid (SCF) assisted foaming controlled by electromagnetic forming. Through a series of experimental and analytical studies, this work investigates the feasibility and effectiveness of EFIF. First, the impact of pressure drop rate and pressure drop on cell size and density is examined through a specialized experimental setup enabling performing injection, forming, and foaming processes in a single operation. The potential influence of electromagnetic forming on foam injection molding is explored through experiments focusing on the effects of a polymer layer between sheet metal blank and the electromagnetic coils. Additionally, an analytical study evaluates the EFIF process by calculating expected pressure drop rates under different processing conditions and their influence on cell nucleation rates. The results showed the possibility of achieving pressure drop rates up to 1.5 × 105 bar/sec, resulting in nucleation rates up to 1.77 × 109 nuclei/cm3sec. Overall, this paper highlights the potential of EFIF to merge existing technologies into a scalable solution for manufacturing multimaterial components with micro- to nanocellular polymer foams.

References

1.
Lutsey
,
N.
,
2010
, “
Review of Technical Literature and Trends Related to Automobile Mass-Reduction Technology
,” University of California, Berkeley, CA, accessed: July 15, 2024, https://escholarship.org/uc/item/85p4x0jn
2.
Goede
,
M.
,
Stehlin
,
M.
,
Rafflenbeul
,
L.
,
Kopp
,
G.
, and
Beeh
,
E.
,
2009
, “
Super Light Car-Lightweight Construction Thanks to a Multi-Material Design and Function Integration
,”
Eur. Transp. Res. Rev.
,
1
(
1
), pp.
5
10
.10.1007/s12544-008-0001-2
3.
Klippstein
,
H.
,
Hassanin
,
H.
,
Diaz De Cerio Sanchez
,
A.
,
Zweiri
,
Y.
, and
Seneviratne
,
L.
,
2018
, “
Additive Manufacturing of Porous Structures for Unmanned Aerial Vehicles Applications
,”
Adv. Eng. Mater.
,
20
(
9
), p.
1800290
.10.1002/adem.201800290
4.
Nazir
,
A.
,
Abate
,
K. M.
,
Kumar
,
A.
, and
Jeng
,
J. Y.
,
2019
, “
A State-of-the-Art Review on Types, Design, Optimization, and Additive Manufacturing of Cellular Structures
,”
Int. J. Adv. Manuf. Technol.
,
104
(
9–12
), pp.
3489
3510
.10.1007/s00170-019-04085-3
5.
Grujicic
,
M.
,
Sellappan
,
V.
,
Arakere
,
G.
,
Seyr
,
N.
,
Obieglo
,
A.
,
Erdmann
,
M.
, and
Holzleitner
,
J.
,
2009
, “
The Potential of a Clinch-Lock Polymer Metal Hybrid Technology for Use in Load-Bearing Automotive Components
,”
J. Mater. Eng. Perform.
,
18
(
7
), pp.
893
902
.10.1007/s11665-008-9325-2
6.
Filho
,
S. A.
, and
Blaga
,
L.
,
1976
, “
Joining of Polymer-Metal Hybrid Structures: principles and Applications
,”
John Wiley and Sons
, Hoboken, NJ.10.1002/9781119429807
7.
Okolieocha
,
C.
,
Raps
,
D.
,
Subramaniam
,
K.
, and
Altstädt
,
V.
,
2015
, “
Microcellular to Nanocellular Polymer Foams: Progress (2004–2015) and Future directions: A Review
,”
Eur. Polym. J.
,
73
, pp.
500
519
.10.1016/j.eurpolymj.2015.11.001
8.
Azdast
,
T.
, and
Hasanzadeh
,
R.
,
2021
, “
Increasing Cell Density/Decreasing Cell Size to Produce Microcellular and Nanocellular Thermoplastic Foams: A Review
,”
J. Cellular Plast.
,
57
(
5
), pp.
769
797
.10.1177/0021955X20959301
9.
Cuadra-Rodriguez
,
D.
,
Barroso-Solares
,
S.
, and
Pinto
,
J.
,
2021
, “
Advanced Nanocellular Foams: Perspectives on the Current Knowledge and Challenges
,”
Nanomaterials
,
11
(
3
), p. 621. 10.3390/nano11030621
10.
Tigerprints
,
T.
,
Dissertations
,
A. D.
, and
Farahani
,
S.
,
2018
, “
Polymer Injection Forming: A New Age Technology for Polymer Injection Forming: A New Age Technology for Manufacturing Polymer-Metal Hybrids
,” Clemson University, Clemson, SC, accessed July 16, 2024, https://tigerprints.clemson.edu/all_dissertations/2482/
11.
Farahani
,
S.
,
Yerra
,
V. A.
, and
Pilla
,
S.
,
2020
, “
Analysis of a Hybrid Process for Manufacturing Sheet Metal-Polymer Structures Using a Conceptual Tool Design and an Analytical-Numerical Modeling
,”
J. Mater. Process. Technol.
,
279
, p.
116533
.10.1016/j.jmatprotec.2019.116533
12.
Farahani
,
S.
,
Yelne
,
A.
,
Akhavan Niaki
,
F.
, and
Pilla
,
S.
,
2019
, “
Numerical Simulation for the Hybrid Process of Sheet Metal Forming and Injection Molding Using Smoothed Particle Hydrodynamics Method
,” Paper No.
2019-01-0713
.10.4271/2019-01-0713
13.
Farahani
,
S.
,
Pradeep
,
S. A.
, and
Pilla
,
S.
,
2020
, “
Integration Concept of Injection, Forming and Foaming: A Practical Approach to Manufacture Hybrid Structures
,”
Advances in Polymer Processing
,
Berlin, Heidelberg
, Mar. 10, pp.
205
218
.10.1007/978-3-662-60809-8_17
15.
Chen
,
S.-C.
,
Lee
,
K.-H.
,
Chang
,
C.-W.
,
Hsu
,
T.-J.
, and
Feng
,
C.-T.
,
2022
, “
Using Gas Counter Pressure and Combined Technologies for Microcellular Injection Molding of Thermoplastic Polyurethane to Achieve High Foaming Qualities and Weight Reduction
,”
Polymers (Basel)
,
14
(
10
), p.
2017
.10.3390/polym14102017
16.
Ren
,
J.
,
Lin
,
L.
,
Jiang
,
J.
,
Li
,
Q.
, and
Hwang
,
S.-S.
,
2022
, “
Effect of Gas Counter Pressure on the Surface Roughness, Morphology, and Tensile Strength Between Microcellular and Conventional Injection-Molded PP Parts
,”
Polymers (Basel)
,
14
(
6
), p.
1078
.10.3390/polym14061078
17.
Psyk
,
V.
,
Risch
,
D.
,
Kinsey
,
B. L.
,
Tekkaya
,
A. E.
, and
Kleiner
,
M.
,
2011
, “
Electromagnetic Forming—A Review
,”
J. Mater. Process Technol.
,
211
(
5
), pp.
787
829
.10.1016/j.jmatprotec.2010.12.012
18.
Park
,
C. B.
,
Baldwin
,
D. F.
, and
Suh
,
N. P.
,
1995
, “
Effect of the Pressure Drop Rate on Cell Nucleation in Continuous Processing of Microcellular Polymers
,”
Polym. Eng. Sci.
,
35
(
5
), pp.
432
440
.10.1002/pen.760350509
19.
Ramezani
,
M.
,
Ripin
,
Z. M.
, and
Ahmad
,
R.
, Jun.
2010
, “
Plastic Bulging of Sheet Metals at High Strain Rates
,”
Int. J. Adv. Manuf. Technol.
,
48
(
9–12
), pp.
847
858
.10.1007/s00170-009-2335-x
20.
Doley
,
J. K.
,
Rajak
,
A. K.
,
Kumar
,
R.
, and
Kore
,
S. D.
,
2022
, “
Numerical and Experimental Validation for Prediction of Failure in Electromagnetic Forming of AA6061 Sheet
,”
Transactions of the Indian Institute of Metals
,
75
(
11
), pp.
2977
2983
.10.1007/s12666-022-02686-3
You do not currently have access to this content.