Abstract

This study investigates the evolution of surface integrity of a strategically important niobium-based cermet with nickel binder (NbC–Ni), while processing it with electrochemical machining (ECM) and hybrid laser-ECM (LECM) processes for shaping toward molds and cutting tools applications. The results indicate that, while the ECM process can preserve material properties due to its athermal and noncontact nature, it suffers from selective phase dissolution, particle breakout, and passivation issues when processing the cermet. LECM synergistically applies laser and EC process energies to address these challenges, particularly by homogenizing multiphase dissolution and facilitating passivation weakening while using pH-neutral aqueous electrolyte. A combination of metallography techniques were employed to study the surface integrity and correlate it with process mechanisms. Results indicate that ECM selectively dissolves the Ni phase and induces passivation, while LECM mitigates these surface integrity compromising effects by virtue of passivation weakening (lowest O wt % of 33.2) through enhanced transpassive dissolution and escalated reaction kinetics, leading to surface integrity improvement by lowering the roughness (Sa) by 30%, feature slopes (Sdq) by 32%, and increasing the hardness (HV5 738.7) by 55% as compared to ECM. Thus, LECM presents a promising technique for shaping advanced passivating and multiphase materials.

References

1.
Gusev
,
V. N.
, and
Rozkov
,
L. A.
,
1928
, “
Method of Metal Tube Etched
,” Soviet Union Patent SU 19280 025 470 19 280 321.
2.
Rajurkar
,
K. P.
,
Sundaram
,
M. M.
, and
Malshe
,
A. P.
,
2013
, “
Review of Electrochemical and Electrodischarge Machining
,”
Procedia CIRP
,
6
, pp.
13
26
.10.1016/j.procir.2013.03.002
3.
Klocke
,
F.
,
Klink
,
A.
,
Veselovac
,
D.
,
Aspinwall
,
D. K.
,
Soo
,
S. L.
,
Schmidt
,
M.
,
Schilp
,
J.
,
Levy
,
G.
, and
Kruth
,
J. P.
,
2014
, “
Turbomachinery Component Manufacture by Application of Electrochemical, Electro-Physical and Photonic Processes
,”
CIRP Ann. - Manuf. Technol.
,
63
(
2
), pp.
703
726
.10.1016/j.cirp.2014.05.004
4.
Liu
,
G.
,
Karim
,
M. R.
,
Arshad
,
M. H.
,
Saxena
,
K. K.
,
Liang
,
W.
,
Tong
,
H.
,
Li
,
Y.
,
Yang
,
Y.
,
Li
,
C.
, and
Reynaerts
,
D.
,
2023
, “
Tooling Aspects of Micro Electrochemical Machining (ECM) Technology: Design, Functionality, and Fabrication Routes
,”
J. Mater. Process. Technol.
,
320
, p.
118098
.10.1016/j.jmatprotec.2023.118098
5.
Saxena
,
K. K.
,
Qian
,
J.
, and
Reynaerts
,
D.
,
2020
, “
A Tool-Based Hybrid Laser-Electrochemical Micromachining Process: Experimental Investigations and Synergistic Effects
,”
Int. J. Mach. Tools Manuf.
,
155
, p.
103569
.10.1016/j.ijmachtools.2020.103569
6.
Wang
,
Y.
,
Xu
,
Z.
,
Hu
,
J.
, and
Zhang
,
A.
,
2020
, “
Surface Integrity Analysis of Electrochemical Machining of γ-TiAl Alloys
,”
Mater. Today Commun.
,
25
, p.
101686
.10.1016/j.mtcomm.2020.101686
7.
Tak
,
M.
, and
Mote
,
R. G.
,
2021
, “
Anodic Dissolution Behavior of Passive Layer During Hybrid Electrochemical Micromachining of Ti6Al4V in NaNO3 Solution
,”
ASME J. Micro Nano-Manuf.
,
9
(
4
), p.
041001
.10.1115/1.4052327
8.
Meng
,
L.
,
Zeng
,
Y.
, and
Zhu
,
D.
,
2019
, “
Wire Electrochemical Micromachining of Ni-Based Metallic Glass Using Bipolar Nanosecond Pulses
,”
Int. J. Mach. Tools Manuf.
,
146
, p.
103439
.10.1016/j.ijmachtools.2019.103439
9.
Arshad
,
M. H.
,
Saxena
,
K. K.
,
Huang
,
S.
, and
Reynaerts
,
D.
,
2024
, “
Macro and Micro-Scale Material Removal Mechanisms During ECM/Hybrid Laser-ECM of a Passivating Multiphase NbC–Ni Cermet
,”
Int. J. Mach. Tools Manuf.
,
200
, p.
104182
.10.1016/j.ijmachtools.2024.104182
10.
Klocke
,
F.
,
Harst
,
S.
,
Ehle
,
L.
,
Zeis
,
M.
, and
Klink
,
A.
,
2018
, “
Surface Integrity in Electrochemical Machining Processes: An Analysis on Material Modifications Occurring During Electrochemical Machining
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
232
(
4
), pp.
578
585
.10.1177/0954405417703422
11.
Zhang
,
Q.
,
Natsu
,
W.
, and
Luo
,
H.
,
2024
, “
Realization of High-Precision Electrochemical Machining by Active Use of Hydrogen Bubbles Generated in Non-Machining Area
,”
Precis. Eng.
,
91
, pp.
59
76
.10.1016/j.precisioneng.2024.09.007
12.
Xue
,
J.
,
Dong
,
B.
, and
Zhao
,
Y.
,
2022
, “
Significance of Waveform Design to Achieve Bipolar Electrochemical Jet Machining of Passivating Material Via Regulation of Electrode Reaction Kinetics
,”
Int. J. Mach. Tools Manuf.
,
177
, p.
103886
.10.1016/j.ijmachtools.2022.103886
13.
Arshad
,
M. H.
,
Saxena
,
K. K.
, and
Reynaerts
,
D.
,
2024
, “
Hybrid Laser-ECM Processing of Advanced Materials in Neutral Electrolyte Without Aggressive Reagents: Machining Performance, Removal Characteristics and Sustainability Aspects
,”
J. Cleaner Prod.
,
467
, p.
143034
.10.1016/j.jclepro.2024.143034
14.
Liu
,
W.
,
Luo
,
Z.
, and
Kunieda
,
M.
,
2020
, “
Electrolyte Jet Machining of Ti1023 Titanium Alloy Using NaCl Ethylene Glycol-Based Electrolyte
,”
J. Mater. Process. Technol.
,
283
, p.
116731
.10.1016/j.jmatprotec.2020.116731
15.
Speidel
,
A.
,
Mitchell-Smith
,
J.
,
Bisterov
,
I.
, and
Clare
,
A. T.
,
2019
, “
Oscillatory Behaviour in the Electrochemical Jet Processing of Titanium
,”
J. Mater. Process. Technol.
,
273
, p.
116264
.10.1016/j.jmatprotec.2019.116264
16.
Duan
,
S.
,
Liu
,
J.
,
Wang
,
J.
,
Tang
,
B.
, and
Zhu
,
D.
,
2023
, “
Anodic Electrochemical Behaviors of Inconel 718 and Rene 65 Alloys in NaNO3 Solution
,”
J. Mater. Res. Technol.
,
26
, pp.
7312
7328
.10.1016/j.jmrt.2023.09.014
17.
Besekar
,
N.
, and
Bhattacharyya
,
B.
,
2021
, “
Vibration-Assisted Axial Nozzle Jet Flow Wire Electrochemical Machining for Micromachining
,”
ASME J. Micro Nano-Manuf.
,
9
(
4
), p.
044501
.10.1115/1.4053747
18.
Sharma
,
S.
, and
Dvivedi
,
A.
,
2024
, “
Comparative Analysis of Simultaneous Electrochemical and Electrodischarge Machining Process
,”
ASME J. Micro Nano-Manuf.
,
12
(
4
), p.
041001
.10.1115/1.4066488
19.
Frotscher
,
O.
,
Schaarschmidt
,
I.
,
Lauwers
,
D.
,
Paul
,
R.
,
Meinke
,
M.
,
Steinert
,
P.
,
Schubert
,
A.
,
Schröder
,
W.
, and
Richter
,
M.
,
2022
, “
Investigation of Lorentz Force-Induced Flow of NaNO3-Electrolyte for Magnetic Field-Assisted Electrochemical Machining
,”
Int. J. Adv. Manuf. Technol.
,
121
(
1–2
), pp.
937
947
.10.1007/s00170-022-09349-z
20.
Saxena
,
K. K.
,
Qian
,
J.
, and
Reynaerts
,
D.
,
2018
, “
A Review on Process Capabilities of Electrochemical Micromachining and Its Hybrid Variants
,”
Int. J. Mach. Tools Manuf.
,
127
, pp.
28
56
.10.1016/j.ijmachtools.2018.01.004
21.
Saxena
,
K. K.
,
Chen
,
X.
,
Qian
,
J.
, and
Reynaerts
,
D.
,
2020
, “
A Tool-Based Precision Hybrid Laser-Electrochemical Micromachining Process: Process Analysis by Multidisciplinary Simulations and Experiments
,”
J. Electrochem. Soc.
,
167
(
14
), p.
143502
.10.1149/1945-7111/abc10c
22.
Saxena
,
K. K.
,
Arshad
,
M. H.
,
Wu
,
M.
,
Qian
,
J.
, and
Reynaerts
,
D.
,
2022
, “
A ‘Virtual Sensing’ Framework for ΜECM/Hybrid Laser-ΜECM for Monitoring Interelectrode Gap Conditions
,”
Procedia CIRP
,
113
, pp.
445
452
.10.1016/j.procir.2022.09.198
23.
Rajendhran
,
N.
,
Pondicherry
,
K.
,
Huang
,
S.
,
Vleugels
,
J.
, and
De Baets
,
P.
,
2023
, “
Influence of Abrasive Characteristics on the Wear Micro-Mechanisms of NbC and WC Cermets During Three-Body Abrasion
,”
Wear
,
530–531
, p.
205007
.10.1016/j.wear.2023.205007
24.
Woydt
,
M.
,
Mohrbacher
,
H.
,
Vleugels
,
J.
, and
Huang
,
S.
,
2016
, “
Niobium Carbide for Wear Protection—Tailoring Its Properties by Processing and Stoichiometry
,”
Met. Powder Rep.
,
71
(
4
), pp.
265
272
.10.1016/j.mprp.2015.12.010
25.
Anwer
,
Z.
,
Huang
,
S.
, and
Vleugels
,
J.
,
2022
, “
Liquid Phase Assisted Synthesis of (Ti,V,Nb,Ta,W)C-Ni High Entropy Carbide Cermets by Conventional Pressureless Sintering
,”
Int. J. Refract. Met. Hard Mater.
,
107
, p.
105914
.10.1016/j.ijrmhm.2022.105914
26.
Pope
,
R. M.
, and
Fry
,
E. S.
,
1997
, “
Absorption Spectrum (380–700 Nm) of Pure Water. II. Integrating Cavity Measurements
,”
Appl. Opt.
,
36
(
33
), pp.
8710
8723
.10.1364/AO.36.008710
27.
Schultze
,
J. W.
, and
Lohrengel
,
M. M.
,
2000
, “
Stability, Reactivity and Breakdown of Passive Films. Problems of Recent and Future Research
,”
Electrochim. Acta
,
45
(
15–16
), pp.
2499
2513
.10.1016/S0013-4686(00)00347-9
28.
Lohrengel
,
M. M.
,
Klüppel
,
I.
,
Rosenkranz
,
C.
,
Bettermann
,
H.
, and
Schultze
,
J. W.
,
2003
, “
Microscopic Investigations of Electrochemical Machining of Fe in NaNO3
,”
Electrochim. Acta
,
48
(
20–22
), pp.
3203
3211
.10.1016/S0013-4686(03)00372-4
29.
Fletcher
,
S.
,
2020
, “
Electrochemical Potentials From First Principles
,”
J. Solid State Electrochem.
,
24
(
11–12
), pp.
3029
3038
.10.1007/s10008-020-04740-w
You do not currently have access to this content.