In this paper, we studied the effect of microscopic surface roughness on heat transfer between aluminum and water by molecular dynamic (MD) simulations and macroscopic surface roughness on heat transfer between aluminum and water by finite element (FE) method. It was observed that as the microscopic scale surface roughness increases, the thermal boundary conductance increases. At the macroscopic scale, different degrees of surface roughness were studied by finite element method. The heat transfer was observed to enhance as the surface roughness increases. Based on the studies of thermal boundary conductance as a function of system size at the molecular level, a procedure was proposed to obtain the thermal boundary conductance at the mesoscopic scale. The thermal boundary resistance at the microscopic scale obtained by MD simulations and the thermal boundary resistance at the mesoscopic scale obtained by the extrapolation procedure can be included and implemented at the interfacial elements in the finite element method at the macroscopic scale. This provides us a useful model, in which different scales of surface roughness can be included, for heat transfer analysis.

References

1.
Ogoh
,
W.
, and
Groulx
,
D.
,
2012
, “
Effects of the Heat Transfer Fluid Velocity on the Storage Characteristics of a Cylindrical Latent Heat Energy Storage System: A Numerical Study
,”
Heat Mass Transfer
,
48
, pp.
439
449
.10.1007/s00231-011-0888-3
2.
Sari
,
A.
,
2004
, “
Form-Stable Paraffin/High Density Polyethylene Composites as Solid–Liquid Phase Change Material for Thermal Energy Storage: Preparation and Thermal Properties
,”
Energy Convers. Manage.
,
45
, pp.
2033
2042
.10.1016/j.enconman.2003.10.022
3.
Zalbaa
,
B.
,
Marina
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
, pp.
251
283
.10.1016/S1359-4311(02)00192-8
4.
Berenson
,
P. J.
,
1962
, “
Experiments on Pool-Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
5
, pp.
985
999
.10.1016/0017-9310(62)90079-0
5.
Hale
,
N. W.
, Jr.
, and
Viskanta
,
R.
,
1980
, “
Solid-Liquid Phase-Change Heat Transfer and Interface Motion in Materials Cooled or Heated From Above or Below
,”
Int. J. Heat Mass Transfer
,
23
, pp.
283
292
.10.1016/0017-9310(80)90116-7
6.
Harriott
,
P.
, and
Hamilton
,
R. M.
,
1965
, “
Solid-Liquid Mass Transfer in Turbulent Pipe Flow
,”
Chem. Eng. Sci.
,
20
, pp.
1073
1078
.10.1016/0009-2509(65)80110-5
7.
Hetsroni
,
G.
, and
Rozenblit
,
R.
,
1994
, “
Heat Transfer to a Liquid-Solid Mixture in a Flame
,”
Int. J. Multiphase Flow
,
20
, pp.
671
689
.10.1016/0301-9322(94)90038-8
8.
Gao
,
J.
,
Gu
,
H.
, and
Xu
,
B.
,
2009
, “
Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications
,”
Acc. Chem. Res.
,
42
(
8
), pp.
1097
1107
.10.1021/ar9000026
9.
Nam
,
Y. S.
, and
Park
,
T. G.
,
1999
, “
Biodegradable Polymeric Microcellular Foams by Modified Thermally Induced Phase Separation Method
,”
Biomaterials
,
20
(
19
), pp.
1783
1790
.10.1016/S0142-9612(99)00073-3
10.
Kapitza
,
P. L.
,
1941
, “
Heat Transfer and Superfluidity of Helium II
,”
Phys. Rev.
,
60
, pp.
354
355
.10.1103/PhysRev.60.354
11.
Maruyama
,
S.
, and
Kimura
,
T.
,
1999
, “
A Study on Thermal Resistance Over a Solid-Liquid Interface by the Molecular Dynamics Method
,”
Therm. Sci. Eng.
,
7
(
1
), pp.
63
68
.
12.
Xue
,
L.
,
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U.-S.
, and
Eastman
,
J. A.
,
2004
, “
Effect of Liquid Layering at the Liquid-Solid Interface on Thermal Transport
,”
Int. J. Heat Mass Transfer
,
47
, pp.
4277
–4284.10.1016/j.ijheatmasstransfer.2004.05.016
13.
Wang
,
C. S.
,
Chen
,
J. S.
,
Shiomi
,
J.
, and
Maruyama
,
S.
,
2007
, “
A Study on the Thermal Resistance Over Solid-Liquid-Vapor Interfaces in a Finite-Space by a Molecular Dynamics Method
,”
Int. J. Therm. Sci.
,
46
, pp.
1203
–1210.10.1016/j.ijthermalsci.2007.01.009
14.
Shenogina
,
N.
,
Godawat
,
R.
,
Keblinski
,
P.
, and
Garde
,
S.
,
2009
, “
How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces
,”
Phys. Rev. Lett.
,
102
, p.
156101
.10.1103/PhysRevLett.102.156101
15.
Wang
,
Y.
, and
Keblinski
,
P.
,
2011
, “
Role of Wetting and Nanoscale Roughness on Thermal Conductance at Liquid-Solid Interface
,”
Appl. Phys. Lett.
,
99
, p.
073122
.10.1063/1.3626850
16.
Nagayama
,
G.
,
Kawagoe
,
M.
,
Tokunaga
,
A.
, and
Tsuruta
,
T.
,
2010
, “
On the Evaporation Rate of Ultra-Thin Liquid Film at the Nanostructured Surface: A Molecular Dynamics Study
,”
Int. J. Therm. Sci.
,
49
, pp.
59
–66.10.1016/j.ijthermalsci.2009.06.001
17.
Jones
,
B. J.
,
McHale
,
J. P.
, and
Garimella
,
S. V.
,
2009
, “
The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
131
, p.
121009
.10.1115/1.3220144
18.
Zhang
,
W.
,
Meng
,
G.
,
Wei
,
X.
, and
Peng
,
Z.
,
2012
, “
Effect of Surface Roughness on Rarefied-Gas Heat Transfer in Microbearings
,”
Phys. Lett. A
,
376
, pp.
789
–794.10.1016/j.physleta.2012.01.005
19.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comp. Phys.
,
117
, pp.
1
19
.10.1006/jcph.1995.1039
20.
Voter
,
A. F.
, and
Chen
,
S. P.
,
1986
, “
Accurate Interatomic Potentials for Ni, Al and Ni3Al
,”
Mat. Res. Soc. Symp. Proc.
,
82
, pp.
175
–180.10.1557/PROC-82-175
21.
Mu¨ller-Plathe
,
F.
,
1999
, “
Reversing the Perturbation in Nonequilibrium Molecular Dynamics: An Easy Way to Calculate the Shear Viscosity of Fluids
,”
Phys. Rev. E
,
59
(
5
), pp.
4894
–4898.10.1103/PhysRevE.59.4894
22.
Chantrenne
,
P.
,
Raynaud
,
M.
,
Baillis
,
D.
, and
Barrat
,
J. L.
,
2003
, “
Study of Phonon Heat Transfer in Metallic Solids From Molecular Dynamic Simulations
,”
Nanoscale Microscale Thermophys. Eng.
,
7
, pp.
117
–136.10.1080/10893950390203314
23.
Mizoguchi
,
K.
,
Takeuchi
,
H.
,
Hino
,
T.
, and
Nakayama
,
M.
,
2002
, “
Finite-Size Effects on Coherent Folded Acoustic Phonons in GaAs/AIAs Superlattices
,”
J. Phys.: Condens. Matter
,
14
, pp.
L103
L109
.10.1088/0953-8984/14/4/106
24.
Chantrenne
,
P.
, and
Barrat
,
J.
,
2004
,
Finite Size Effects in Determination of Thermal Conductivities: Comparing Molecular Dynamics Results With Simple Models
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
577
–585.10.1115/1.1777582
25.
Simulia Corporations
,” http://www.simulia.com/
You do not currently have access to this content.