Abstract

This paper investigates the applicability of the nondestructive testing and evaluation (NDT&E) method using ultrasonic signals to monitor the curing of alkali-activated fly ash-based concrete (AAFC). The evaluation was carried out on AAFC specimens with two different water/binder (W/B) ratios of 0.3 and 0.5 and after curing at 60 °C for 7, 14, and 28 days, respectively. The signals are recorded and analyzed using linear and non-linear ultrasonic techniques. The results show that the non-linear ultrasonic technique has a clear advantage over the linear ultrasonic technique when monitoring the curing of AAFC specimens with a lower W/B ratio. However, the specimens with the higher W/B ratio do not undergo proper curing and therefore do not show clear distinctions between the curing times measured from the two ultrasonic techniques. The unconfined compressive strength (UCS) of the AAFC specimens at different W/B ratios and curing times is also measured. The UCS results showed a good correlation with the ultrasonic results.

References

1.
Andrew
,
R. M.
,
2017
, “
Global CO2 Emissions From Cement Production
,”
Earth Syst. Sci. Data
,
10
(
1
), pp.
195
217
.
2.
Luukkonen
,
T.
,
Abdollahnejad
,
Z.
,
Yliniemi
,
J.
,
Kinnunen
,
P.
, and
Illikainen
,
M.
,
2018
, “
One-Part Alkali-Activated Materials: A Review
,”
Cem. Concr. Res.
,
103
, pp.
21
34
.
3.
Zhang
,
M. H.
, and
Islam
,
J.
,
2012
, “
Use of Nano-Silica to Reduce Setting Time and Increase Early Strength of Concretes With High Volumes of Fly Ash or Slag
,”
Constr. Build. Mater.
,
29
, pp.
573
580
.
4.
Nikvar-Hassani
,
A.
, and
Zhang
,
L.
,
2020
, “
Development of a New Geopolymer Based Cementitious Material for Pumpable Roof Supports in Underground Mining
,”
Geo-Congress 2020: Engineering, Monitoring, and Management of Geotechnical Infrastructure
,
Reston, VA
,
American Society of Civil Engineers
, pp.
325
334
.
5.
Palomo
,
A.
,
Grutzeck
,
M. W.
, and
Blanco
,
M. T.
,
1999
, “
Alkali-Activated Fly Ashes: A Cement for the Future
,”
Cem. Concr. Res.
,
29
(
8
), pp.
1323
1329
.
6.
Nikvar-Hassani
,
A.
,
Manjarrez
,
L.
, and
Zhang
,
L.
,
2022
, “
Rheology, Setting Time, and Compressive Strength of Class F Fly Ash–Based Geopolymer Binder Containing Ordinary Portland Cement
,”
J. Mater. Civ. Eng.
,
34
(
1
), pp.
1
13
.
7.
Assi
,
L. N.
,
Deaver
,
E.
,
Elbatanouny
,
M. K.
, and
Ziehl
,
P.
,
2016
, “
Investigation of Early Compressive Strength of Fly Ash-Based Geopolymer Concrete
,”
Constr. Build. Mater.
,
112
, pp.
807
815
.
8.
Manjarrez
,
L.
, and
Zhang
,
L.
,
2018
, “
Utilization of Copper Mine Tailings as Road Base Construction Material Through Geopolymerization
,”
J. Mater. Civ. Eng.
,
30
(
9
), p.
04018201
.
9.
Waller
,
V.
,
D’Aloïa
,
L.
,
Cussigh
,
F.
, and
Lecrux
,
S.
,
2004
, “
Using the Maturity Method in Concrete Cracking Control at Early Ages
,”
Cem. Concr. Compos.
,
26
(
5
), pp.
589
599
.
10.
Pignat
,
C.
,
Navi
,
P.
, and
Scrivener
,
K.
,
2005
, “
Simulation of Cement Paste Microstructure Hydration, Pore Space Characterization and Permeability Determination
,”
Mater. Struct. Constr.
,
38
(
278
), pp.
459
466
.
11.
Ulm
,
F. J.
,
Vandamme
,
M.
,
Bobko
,
C.
,
Alberto Ortega
,
J.
,
Tai
,
K.
, and
Ortiz
,
C.
,
2007
, “
Statistical Indentation Techniques for Hydrated Nanocomposites: Concrete, Bone, and Shale
,”
J. Am. Ceram. Soc.
,
90
(
9
), pp.
2677
2692
.
12.
Manzi
,
S.
,
Mazzotti
,
C.
, and
Bignozzi
,
M. C.
,
2013
, “
Short and Long-Term Behavior of Structural Concrete with Recycled Concrete Aggregate
,”
Cem. Concr. Compos.
,
37
(
1
), pp.
312
318
.
13.
Seara-Paz
,
S.
,
González-Fonteboa
,
B.
,
Martínez-Abella
,
F.
, and
González-Taboada
,
I.
,
2016
, “
Time-Dependent Behaviour of Structural Concrete Made with Recycled Coarse Aggregates. Creep and Shrinkage
,”
Constr. Build. Mater.
,
122
, pp.
95
109
.
14.
Shariq
,
M.
,
Prasad
,
J.
, and
Masood
,
A.
,
2013
, “
Studies in Ultrasonic Pulse Velocity of Concrete Containing GGBFS
,”
Constr. Build. Mater.
,
40
, pp.
944
950
.
15.
Trtnik
,
G.
, and
Gams
,
M.
,
2014
, “
Recent Advances of Ultrasonic Testing of Cement Based Materials at Early Ages
,”
Ultrasonics
,
54
(
1
), pp.
66
75
.
16.
Karaiskos
,
G.
,
Deraemaeker
,
A.
,
Aggelis
,
D. G.
, and
Van Hemelrijck
,
D.
,
2015
, “
Monitoring of Concrete Structures Using the Ultrasonic Pulse Velocity Method
,”
Smart Mater. Struct.
,
24
(
11
), p.
113001
.
17.
Zhutovsky
,
S.
, and
Kovler
,
K.
,
2017
, “
Application of Ultrasonic Pulse Velocity for Assessment of Thermal Expansion Coefficient of Concrete at Early Age
,”
Mater. Struct. Constr.
,
50
(
1
), pp.
1
8
.
18.
Kovler
,
K.
,
Wang
,
F.
, and
Muravin
,
B.
,
2018
, “
Testing of Concrete by Rebound Method: Leeb Versus Schmidt Hammers
,”
Mater. Struct. Constr.
,
51
(
5
), pp.
1
14
.
19.
Khatib
,
N.
,
Ouacha
,
E. H.
,
Faiz
,
B.
,
Ezzaidi
,
M.
, and
Banouni
,
H.
,
2020
, “
Study of Early Age Behaviour of Mortar Pastes With Different Dosages of Alkaline Accelerator for Shotcrete : The Use of the Ultrasound Pulse Echo Method
,” (August).
20.
Delgadillo
,
H. H.
,
Kern
,
B.
,
Loendersloot
,
R.
,
Yntema
,
D.
, and
Akkerman
,
R.
,
2018
, “
A Methodology Based on Pulse-Velocity Measurements to Quantify the Chemical Degradation Levels in Thin Mortar Specimens
,”
J. Nondestruct. Eval.
,
37
(
4
), p.
79
.
21.
Cao
,
Y.
,
Tian
,
N.
,
Bahr
,
D.
,
Zavattieri
,
P. D.
,
Youngblood
,
J.
,
Moon
,
R. J.
, and
Weiss
,
J.
,
2016
, “
The Influence of Cellulose Nanocrystals on the Microstructure of Cement Paste
,”
Cem. Concr. Compos.
,
74
, pp.
164
173
.
22.
Hong
,
S.
,
Wiggenhauser
,
H.
,
Helmerich
,
R.
,
Dong
,
B.
,
Dong
,
P.
, and
Xing
,
F.
,
2017
, “
Long-Term Monitoring of Reinforcement Corrosion in Concrete Using Ground Penetrating Radar
,”
Corros. Sci.
,
114
, pp.
123
132
.
23.
Sun
,
H.
,
Pashoutani
,
S.
, and
Zhu
,
J.
,
2018
, “
Nondestructive Evaluation of Concrete Bridge Decks With Automated Acoustic Scanning System and Ground Penetrating Radar
,”
Sensors
,
18
(
6
), pp.
1
17
.
24.
Wai-Lok Lai
,
W.
,
Dérobert
,
X.
, and
Annan
,
P.
,
2018
, “
A Review of Ground Penetrating Radar Application in Civil Engineering: A 30-Year Journey From Locating and Testing to Imaging and Diagnosis
,”
NDT E Int.
,
96
, pp.
58
78
.
25.
Marino
,
D.
,
Kim
,
J. Y.
,
Ruiz
,
A.
,
Joo
,
Y. S.
,
Qu
,
J.
, and
Jacobs
,
L. J.
,
2016
, “
Using Nonlinear Ultrasound to Track Microstructural Changes Due to Thermal Aging in Modified 9%Cr Ferritic Martensitic Steel
,”
NDT E Int.
,
79
, pp.
46
52
.
26.
Narayanan
,
A.
, and
Subramaniam
,
K. V. L.
,
2016
, “
Early Age Monitoring of Cement Mortar Using Embedded Piezoelectric Sensors
,”
Heal. Monit. Struct. Biol. Syst. 2016
, 9805,
April
, p.
98052W
.
27.
Lim
,
Y. Y.
,
Kwong
,
K. Z.
,
Liew
,
W. Y. H.
, and
Soh
,
C. K.
,
2016
, “
Non-Destructive Concrete Strength Evaluation Using Smart Piezoelectric Transducer–A Comparative Study
,”
Smart Mater. Struct.
,
25
(
8
), pp.
1
14
.
28.
Talakokula
,
V.
,
Bhalla
,
S.
, and
Gupta
,
A.
,
2018
, “
Monitoring Early Hydration of Reinforced Concrete Structures Using Structural Parameters Identified by Piezo Sensors via Electromechanical Impedance Technique
,”
Mech. Syst. Signal Process.
,
99
, pp.
129
141
.
29.
Bharathi Priya
,
C.
,
Jothi Saravanan
,
T.
,
Balamonica
,
K.
,
Gopalakrishnan
,
N.
, and
Rao
,
A. R. M.
,
2018
, “
EMI Based Monitoring of Early-Age Characteristics of Concrete and Comparison of Serial/Parallel Multi-Sensing Technique
,”
Constr. Build. Mater.
,
191
, pp.
1268
1284
.
30.
Lu
,
X.
,
Lim
,
Y. Y.
, and
Soh
,
C. K.
,
2018
, “
A Novel Electromechanical Impedance–Based Model for Strength Development Monitoring of Cementitious Materials
,”
Struct. Heal. Monit.
,
17
(
4
), pp.
902
918
.
31.
Hu
,
X.
,
Shi
,
C.
,
Liu
,
X.
,
Zhang
,
J.
, and
de Schutter
,
G.
,
2019
, “
A Review on Microstructural Characterization of Cement-Based Materials by AC Impedance Spectroscopy
,”
Cem. Concr. Compos.
,
100
, pp.
1
14
.
32.
Domski
,
J.
, and
Katzer
,
J.
,
2015
, “
An Example of Monitoring of Early-age Concrete Temperatures in a Massive Concrete Slab
,”
Sel. Pract. Theor. Asp. Contemp. Mech.
, pp.
94
105
.
33.
Khan
,
F.
,
Rajaram
,
S.
,
Vanniamparambil
,
P. A.
,
Bolhassani
,
M.
,
Hamid
,
A.
,
Kontos
,
A.
, and
Bartoli
,
I.
,
2015
, “
Multi-Sensing NDT for Damage Assessment of Concrete Masonry Walls
,”
Struct. Control Heal. Monit.
,
22
(
3
), pp.
449
462
.
34.
Schlicke
,
D.
,
Kanavaris
,
F.
,
Lameiras
,
R.
, and
Azenha
,
M.
,
2019
, “
On-Site Monitoring of Mass Concrete
,”
Thermal Cracking of Massive Concrete Structures
, pp.
307
355
.
35.
Farnam
,
Y.
,
Geiker
,
M. R.
,
Bentz
,
D.
, and
Weiss
,
J.
,
2015
, “
Acoustic Emission Waveform Characterization of Crack Origin and Mode in Fractured and ASR Damaged Concrete
,”
Cem. Concr. Compos.
,
60
, pp.
135
145
.
36.
Dzaye
,
E. D.
,
De Schutter
,
G.
, and
Aggelis
,
D. G.
,
2018
, “
Study on Mechanical Acoustic Emission Sources in Fresh Concrete
,”
Arch. Civ. Mech. Eng.
,
18
(
3
), pp.
742
754
.
37.
Dzaye
,
E. D.
,
De Schutter
,
G.
, and
Aggelis
,
D.
,
2017
, “
Early-Age Monitoring of Fresh Cementitious Material by Acoustic Emission
,”
Second International RILEM/COST Conferences on Early Age Cracking and Serviceability in Cement-based Materials and Structures
,
September
, pp.
417
422
.
38.
Banjara
,
N. K.
,
Sasmal
,
S.
, and
Srinivas
,
V.
,
2019
, “
Investigations on Acoustic Emission Parameters During Damage Progression in Shear Deficient and GFRP Strengthened Reinforced Concrete Components
,”
Meas. J. Int. Meas. Confed.
,
137
, pp.
501
514
.
39.
Thirumalaiselvi
,
A.
, and
Sasmal
,
S.
,
2019
, “
Acoustic Emission Monitoring and Classification of Signals in Cement Composites During Early-Age Hydration
,”
Constr. Build. Mater.
,
196
, pp.
411
427
.
40.
Ray
,
S.
,
Devi
,
N.
,
Dash
,
J.
,
Sasmal
,
S.
, and
Pesala
,
B.
,
2014
, “
Effect of Nano-Silica Incorporation on Cement Hydration Dynamics Studied Using Terahertz Spectroscopy
,”
Optics InfoBase Conference Paper
,
Kanpur, India
,
Dec. 4–8
, pp.
2
4
.
41.
Ray
,
S.
,
Dash
,
J.
,
Devi
,
N.
,
Sasmal
,
S.
, and
Pesala
,
B.
,
2018
, “
Comparative Study of Hydration Kinetics of Cement and Tricalcium Silicate Using Terahertz Spectroscopy and Density Functional Theory Simulations
,”
J. Infrared, Millimeter, Terahertz Waves
,
39
(
7
), pp.
651
666
.
42.
Castellano
,
A.
,
Fraddosio
,
A.
,
Piccioni
,
M. D.
, and
Kundu
,
T.
,
2021
, “
Linear and Nonlinear Ultrasonic Techniques for Monitoring Stress-Induced Damages in Concrete
,”
J. Nondestruct. Eval. Diagnostics Progn. Eng. Syst.
,
4
(
4
), pp.
1
21
.
43.
Alnuaimi
,
H.
,
Sasmal
,
S.
,
Amjad
,
U.
,
Nikvar-Hassani
,
A.
,
Zhang
,
L.
, and
Kundu
,
T.
,
2020
, “
Monitoring Concrete Curing by Linear and Nonlinear Ultrasonic Methods
,”
ACI Struct. Mater. J.
,
118
(
3
), pp.
61
69
.
44.
Planès
,
T.
, and
Larose
,
E.
,
2013
, “
A Review of Ultrasonic Coda Wave Interferometry in Concrete
,”
Cem. Concr. Res.
,
53
, pp.
248
255
.
45.
Amjad
,
U.
,
Sasmal
,
S.
,
Alnuaimi
,
H. N.
, and
Kundu
,
T.
,
2019
, “
Linear and Nonlinear Ultrasonic Techniques for Investigations of Cement Composites of Different Ages
,”
46th Annual Review of Progress in Quantitative Nondestructive Evaluation QNDE2019
,
Portland, OR
, pp.
2
4
.
46.
Alnuaimi
,
H.
,
Amjad
,
U.
,
Russo
,
P.
,
Lopresto
,
V.
, and
Kundu
,
T.
,
2021
, “
Monitoring Damage in Composite Plates From Crack Initiation to Macro- Crack Propagation Combining Linear and Nonlinear Ultrasonic Techniques
,”
Struct. Heal. Monit.
,
20
(
1
), pp.
139
150
.
47.
Kundu
,
T.
,
2019
,
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation
,
Springer
,
New York
.
48.
Liu
,
P.
,
Sohn
,
H.
,
Yang
,
S.
, and
Kundu
,
T.
,
2015
, “
Fatigue Crack Localization Using Noncontact Laser Ultrasonics and State Space Attractors
,”
J. Acoust. Soc. Am.
,
138
(
2
), pp.
890
898
.
49.
Li
,
W.
,
Cui
,
H.
,
Wen
,
W.
,
Su
,
X.
, and
Engler-Pinto
,
C. C.
,
2015
, “
In Situ Nonlinear Ultrasonic for Very High Cycle Fatigue Damage Characterization of a Cast Aluminum Alloy
,”
Mater. Sci. Eng. A
,
645
, pp.
248
254
.
50.
Climent
,
,
Miró
,
M.
,
Carbajo
,
J.
,
Poveda
,
P.
,
de Vera
,
G.
, and
Ramis
,
J.
,
2019
, “
Use of Non-Linear Ultrasonic Techniques to Detect Cracks Due to Steel Corrosion in Reinforced Concrete Structures
,”
Materials
,
12
(
5
), p.
813
.
51.
Chen
,
Q. H.
,
Lin
,
S. B.
,
Yang
,
C. L.
,
Fan
,
C. L.
, and
Ge
,
H. L.
,
2016
, “
Effect of Ultrasound on Heterogeneous Nucleation in TIG Welding of Al-Li Alloy
,”
Acta Metall. Sin.
,
29
(
12
), pp.
1081
1088
.
52.
Liu
,
P.
,
Sohn
,
H.
, and
Kundu
,
T.
,
2014
, “
Fatigue Crack Localization Using Laser Nonlinear Wave Modulation Spectroscopy (LNWMS)
,”
J. Korean Soc. Nondestruct. Test.
,
34
(
6
), pp.
419
427
.
53.
Alnuaimi
,
H.
,
Amjad
,
U.
,
Park
,
S.
,
Russo
,
P.
,
Lopresto
,
V.
, and
Kundu
,
T.
,
2022
, “
An Improved Nonlinear Ultrasonic Technique for Detecting and Monitoring Impact Induced Damage in Composite Plates
,”
Ultrasonics
,
119
, p.
106620
.
54.
Eiras
,
J. N.
,
Kundu
,
T.
,
Bonilla
,
M.
, and
Payá
,
J.
,
2013
, “
Nondestructive Monitoring of Ageing of Alkali Resistant Glass Fiber Reinforced Cement (GRC)
,”
J. Nondestruct. Eval.
,
32
(
3
), pp.
300
314
.
55.
Payan
,
C.
,
Garnier
,
V.
, and
Moysan
,
J.
,
2010
, “
Potential of Nonlinear Ultrasonic Indicators for Nondestructive Testing of Concrete
,”
Adv. Civ. Eng.
,
2010
, pp.
1
8
.
56.
Van Den Abeele
,
K.
,
2003
, “
Damage Assessment in Reinforced Concrete Using Nonlinear Vibration Techniques
,” Cement Concrete Res.
30
, pp.
341
344
.
57.
ASTM C128
,
2015
, “
ASTM C128: Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate
,” ASTM International, i, p.
6
.
58.
ASTM C39/C39M—16b
,
2016
, “
Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens
,” ASTM International, pp.
1
7
.
59.
Sachse
,
W.
, and
Pao
,
Y. H.
,
1978
, “
On the Determination of Phase and Group Velocities of Dispersive Waves in Solids
,”
J. Appl. Phys.
,
49
(
8
), pp.
4320
4327
.
60.
Hull
,
D. R.
,
Kautz
,
H. E.
, and
Vary
,
A.
,
1984
, “
Ultrasonic Velocity Measurement Using Phase-Slope and Cross-Correlation Methods
,”
Spring Conference of the American Society for Nondestructive Testing
,
Denver, CO
,
May 21–24
.
61.
Papadakis
,
E. P.
,
1967
, “
Ultrasonic Phase Velocity by the Pulse-Echo-Overlap Method Incorporating Diffraction Phase Corrections
,”
J. Acoust. Soc. Am.
,
42
(
5
), pp.
1045
1051
.
62.
Manjarrez
,
L.
,
Nikvar-Hassani
,
A.
,
Shadnia
,
R.
, and
Zhang
,
L.
,
2019
, “
Experimental Study of Geopolymer Binder Synthesized With Copper Mine Tailings and Low-Calcium Copper Slag
,”
J. Mater. Civ. Eng.
,
31
(
8
), p.
04019156
.
63.
Assi
,
L.
,
Ghahari
,
S. A.
,
Deaver
,
E. E.
,
Leaphart
,
D.
, and
Ziehl
,
P.
,
2016
, “
Improvement of the Early and Final Compressive Strength of Fly Ash-Based Geopolymer Concrete at Ambient Conditions
,”
Constr. Build. Mater.
,
123
, pp.
806
813
.
You do not currently have access to this content.