Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In this paper, an efficient global sensitivity analysis (GSA) method for simulation-based ultrasonic testing (UT) of slot-like defects using multifidelity modeling with novel termination criterion is proposed. GSA quantifies the effect of quantities of interest with variability (e.g., position, height, and angle) on the output (e.g., amplitude). GSA with Sobol’ indices requires the use of Monte Carlo simulations (MCS) when dealing with nonlinear problems having many parameters. It is impractical to perform GSA directly on high-fidelity physics-based models due to their long evaluation times and the large number of required samples. Multifidelity methods construct surrogate models based on data from an accurate high-fidelity model (HFM) and fast low-fidelity models (LFMs). The multifidelity surrogates evaluate quickly and can be used in lieu of the HFM to accelerate the GSA. Conventional multifidelity methods construct the surrogate to meet a prespecified error metric before using it within an analysis. This requires a separate set of testing data and an often arbitrary error metric threshold. To avoid these, a novel multifidelity modeling termination criterion for GSA is proposed that is based on the absolute relative change of the Sobol’ indices. The proposed approach is demonstrated on a simulated UT case inspecting a slot-like defect with three uncertainty variables. The results show a potential for significant reduction in computational cost compared with conventional approaches.

References

1.
Schmerr
,
L. W.
,
2016
,
Fundamentals of Ultrasonic Nondestructive Evaluation
,
Springer International Publishing
,
Berlin, Germany
.
2.
Annis
,
C.
,
2009
,
Nondestructive Evaluation System Reliability Assessment (MIL-HDBK-1823A)
,
Department of Defense
,
United States
.
3.
Du
,
X.
, and
Leifsson
,
L.
,
2020
, “
Multifidelity Modeling by Polynomial Chaos-Based Cokriging to Enable Efficient Model-Based Reliability Analysis of NDT Systems
,”
J. Nondestruct. Eval.
,
39
(
1
), pp.
1
15
.
4.
Syed Akbar Ali
,
M. S.
,
Balasubramaniam
,
K.
,
Rajagopal
,
P.
,
Kumar
,
A.
,
Bhagi
,
P. C.
, and
Jayakumar
,
T.
,
2014
, “
Finite Element Simulations to Predict Pod Curves for Ultrasonic Inspection of Nuclear Components
,”
Procedia Eng.
,
86
, pp.
461
468
.
5.
Knopp
,
J. S.
,
Aldrin
,
J. C.
,
Lindgren
,
E.
, and
Annis
,
C.
,
2007
, “
Investigation of a Model-Assisted Approach to Probability of Detection Evaluation
,”
AIP Conf. Proc.
,
894
(
1
), pp.
1775
1782
.
6.
Koziel
,
S.
,
Ogurtsov
,
S.
, and
Leifsson
,
L.
,
2013
, “
Physics-Based Surrogates for Low-Cost Modeling of Microwave Structures
,”
Procedia Comput. Sci.
,
18
, pp.
869
878
.
7.
Miorelli
,
R.
,
Artusi
,
X.
,
Abdessalem
,
A. B.
, and
Reboud
,
C.
,
2016
, “
Database Generation and Exploitation for Efficient and Intensive Simulation Studies
,”
AIP Conf. Proc.
,
1706
(
1
), p.
180002
.
8.
Miorelli
,
R.
,
Le Bourdais
,
F.
, and
Artusi
,
X.
,
2018
, “
Assessing Performance of Flaw Characterization Methods Through Uncertainty Propagation
,”
AIP Conf. Proc.
,
1949
(
1
), p.
170001
.
9.
Ahmed
,
S.
,
Salucci
,
M.
,
Miorelli
,
R.
,
Anselmi
,
N.
,
Oliveri
,
G.
,
Calmon
,
P.
,
Reboud
,
C.
, and
Massa
,
A.
,
2017
, “
Real Time Groove Characterization Combining Partial Least Squares and SVR Strategies: Application to Eddy Current Testing
,”
J. Phys.: Conf. Ser.
,
904
(
1
), p.
012017
.
10.
Tanco
,
M.
,
Viles
,
E.
, and
Pozueta
,
L.
,
2009
, “Comparing Different Approaches for Design of Experiments (DoE),”
Advances in Electrical Engineering and Computational Science
,
Springer
,
Amsterdam, Netherlands
, pp.
611
621
.
11.
Ballisat
,
A.
,
Wilcox
,
P.
,
Smith
,
R.
, and
Hallam
,
D.
,
2017
, “
Model Assisted Qualification of NDE Techniques
,”
AIP Conf. Proc.
,
1806
(
1
), p.
140005
.
12.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand
,”
J. Chem. Metall. Mining Eng. Soc. South Africa
,
52
(
6
), pp.
119
139
.
13.
Blatman
,
G.
,
2009
, “
Adaptive Sparse Polynomial Chaos Expansion for Uncertainty Propagation and Sensitivity Analysis
,” PhD thesis,
Blaise Pascal University
,
Clermont-Ferrand
.
14.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
15.
Forrester
,
A.
,
Sóbester
,
A.
, and
Keane
,
A.
,
2008
, “Infill Criteria With Noisy Data,”
Engineering Design Via Surrogate Modelling
,
John Wiley and Sons
,
Hoboken, NJ
, pp.
141
153
.
16.
Williams
,
C. K.
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
17.
Peherstorfer
,
B.
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2016
, “
Optimal Model Management for Multifidelity Monte Carlo Estimation
,”
SIAM J. Sci. Comput.
,
38
(
5
), pp.
A3163
A3194
.
18.
Peherstorfer
,
B
,
Willcox
,
K.
, and
Gunzburger
,
M.
,
2018
, “
Survey of Multifidelity Methods in Uncertainty Propagation, Inference, and Optimization
,”
Soc. Ind. Appl. Math.
,
60
(
3
), pp.
550
591
.
19.
Dean
,
J.
,
Corrado
,
G.
,
Monga
,
R.
,
Chen
,
K.
,
Devin
,
M.
,
Mao
,
M.
,
Ranzato
,
M.
,
Senior
,
A.
,
Tucker
,
P.
,
Yang
,
K.
, and
Le
,
Q.
,
2012
, “
Large Scale Distributed Deep Networks
,”
Adv. Neural Inf. Process. Syst.
,
25
, pp.
1223
1231
.
20.
Gentile
,
M.
,
Courbin
,
F.
, and
Meylan
,
G.
,
2013
, “
Interpolating Point Spread Function Anisotropy
,”
Astron. Astrophys.
,
549
, p.
A1
.
21.
Lilburne
,
L.
, and
Tarantola
,
S.
,
2009
, “
Sensitivity Analysis of Spatial Models
,”
Int. J. Geograph. Inf. Sci.
,
23
(
2
), pp.
151
168
.
22.
Sobol
,
I. M.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.
23.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis: The Primer
,
John Wiley and Sons
,
Hoboken, NJ
.
24.
Sobol’
,
I.
,
1993
, “
Sensitivity Estimates for Nonlinear Mathematical Models
,”
Math. Modell. Comput. Exp.
,
1
(
4
), pp.
407
414
.
25.
Wronkowicz
,
A.
,
Dragan
,
K.
, and
Lis
,
K.
,
2018
, “
Assessment of Uncertainty in Damage Evaluation by Ultrasonic Testing of Composite Structures
,”
Compos. Struct.
,
203
, pp.
71
84
.
26.
Kuehl
,
R. O.
,
2000
,
Designs of Experiments: Statistical Principles of Research Design and Analysis
,
Duxbury/Thomson Learning
,
Pacific Grove, CA
.
27.
Lin
,
C. D.
, and
Tang
,
B.
,
2015
, “Latin Hypercubes and Space-Filling Designs,”
Handbook of Design and Analysis of Experiments
,
D.
Bingham
,
A.
Dean
,
M.
Morris
, and
J.
Stufken
, eds.,
Chapman and Hall/CRC
,
New York
, pp.
593
625
, Chapter 4.
28.
Kroese
,
D. P.
,
Brereton
,
T.
,
Taimre
,
T.
, and
Botev
,
Z. I.
,
2014
, “
Why the Monte Carlo Method Is So Important Today
,”
WIREs Comput. Stat.
,
6
(
6
), pp.
386
392
.
29.
Mckay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.
30.
Olsson
,
A.
,
Sandberg
,
G.
, and
Dahlblom
,
O.
,
2003
, “
On Latin Hypercube Sampling for Structural Reliability Analysis
,”
Struct. Saf.
,
25
(
1
), pp.
47
68
.
31.
Darmon
,
M.
,
Dorval
,
V.
,
Kamta Djakou
,
A.
,
Fradkin
,
L.
, and
Chatillon
,
S.
,
2016
, “
A System Model for Ultrasonic NDT Based on the Physical Theory of Diffraction (PTD)
,”
Ultrasonics
,
64
, pp.
115
127
.
32.
Gengembre
,
N.
, and
Lhémery
,
A.
,
2000
, “
Pencil Method in Elastodynamics: Application to Ultrasonic Field Computation
,”
Ultrasonics
,
38
(
1–8
), pp.
495
499
.
33.
Zernov
,
V.
,
Fradkin
,
L.
, and
Darmon
,
M.
,
2012
, “
A Refinement of the Kirchhoff Approximation to the Scattered Elastic Fields
,”
Ultrasonics
,
52
(
7
), pp.
830
835
.
34.
Imperiale
,
A.
,
Leymarie
,
N.
,
Fortuna
,
T.
, and
Demaldent
,
E.
,
2019
, “
Coupling Strategies Between Asymptotic and Numerical Models With Application to Ultrasonic Non-destructive Testing of Surface Flaws
,”
J. Theor. Comput. Acoust.
,
27
(
2
), p.
1850052
.
35.
Foucher
,
F.
,
Lonne
,
S.
,
Toullelan
,
G.
,
Mahaut
,
S.
,
Chatillon
,
S.
, and
Schumacher
,
E.
,
2017
, “
Validation of the Simulation Software CIVA UT in Separated Transmit/Receive Configurations
,” 56th Annual Conference of the British Institute of Non-destructive Testing, NDT 2017,
British Institute of Non-Destructive Testing
,
Telford, UK
.
36.
Efron
,
B.
,
Hatie
,
T.
,
Johnstone
,
I.
, and
Tibshirani
,
R.
,
2004
, “
Least Angle Regression
,”
Ann. Stat.
,
32
(
2
), pp.
407
499
.
37.
Gneiting
,
T.
,
Kleiber
,
W.
, and
Schlather
,
M.
,
2010
, “
Matérn Cross-Covariance Functions for Multivariate Random Fields
,”
J. Am. Stat. Assoc.
,
105
(
491
), pp.
1167
1177
.
38.
Schobi
,
R.
,
Sudret
,
B.
, and
Wiart
,
J.
,
2015
, “
Polynomial-Chaos-Based Kriging
,”
Int. J. Uncertain. Quantif.
,
5
(
2
), pp.
171
193
.
39.
Schöbi
,
R.
,
Sudret
,
B.
, and
Marelli
,
S.
,
2017
, “
Rare Event Estimation Using Polynomial-Chaos Kriging
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A: Civil Eng.
,
3
(
2
), p.
D4016002
.
40.
Du
,
X.
,
Gurrala
,
P.
,
Leifsson
,
L.
,
Song
,
J.
,
Meeker
,
W.
,
Roberts
,
R.
,
Koziel
,
S.
, and
Tesfahunegn
,
Y. A.
,
2018
, “
Stochastic-Expansions-Based Model-Assisted Probability of Detection Analysis of the Spherically-Void-Defect Benchmark Problem
,”
Computational Science—ICCS 2018
,
Wuxi, China
,
Springer International Publishing
,
Cham
, pp.
593
603
, Chapter 6.
You do not currently have access to this content.