Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Fiber Bragg grating sensors have been applied in the remote-bonding configuration for structural health monitoring, in which ultrasonic modes are propagated along the optical fiber to the sensor. Recently, coupling of the ultrasonic mode from optical fiber to optical fiber through an adhesive coupler has also been demonstrated. This paper develops a finite element (FE) model to describe the coupler behavior as a function of the fiber and coupler properties, for future optimization of couplers. The FE model is validated with previous experimental data. We also compare the FE model to three theoretical models (spring and damper frictional contact models and coupled mode theory). The results show that the FE model and spring well replicate the experimental results. Future work will use the resulting FE and spring models to derive solutions for the coupling coefficient as a function of the geometrical and material parameters of the coupler.

References

1.
Wu
,
Q.
,
Yu
,
F.
,
Okabe
,
T.
, and
Kobayashi
,
S.
,
2015
, “
Application of a Novel Optical Fiber Sensor to Detection of Acoustic Emissions by Various Damages in CFRP Laminates
,”
Smart Mater. Struct.
,
24
(
1
), p.
015011
.
2.
Lee
,
J. R.
, and
Tsuda
,
H.
,
2005
, “
Fiber Optic Liquid Leak Detection Technique With an Ultrasonic Actuator and a Fiber Bragg Grating
,”
Opt. Lett.
,
30
(
24
), pp.
3293
3295
.
3.
Tsuda
,
H.
,
Sato
,
E.
,
Nakajima
,
T.
,
Nakamura
,
H.
,
Arakawa
,
T.
,
Shiono
,
H.
,
Minato
,
M.
,
Kurabayashi
,
H.
, and
Sato
,
A.
,
2009
, “
Acoustic Emission Measurement Using a Strain-Insensitive Fiber Bragg Grating Sensor Under Varying Load Conditions
,”
Opt. Lett.
,
34
(
19
), pp.
2942
2944
.
4.
Wee
,
J.
,
Wells
,
B.
,
Hackney
,
D.
,
Bradford
,
P.
, and
Peters
,
K.
,
2016
, “
Increasing Signal Amplitude in Fiber Bragg Grating Detection of Lamb Waves Using Remote Bonding
,”
Appl. Opt.
,
55
(
21
), pp.
5564
5569
.
5.
Wee
,
J.
,
Hackney
,
D.
,
Bradford
,
P.
, and
Peters
,
K.
,
2017
, “
Simulating Increased Lamb Wave Detection Sensitivity of Surface Bonded Fiber Bragg Grating
,”
Smart Mater. Struct.
,
26
(
4
), p.
045034
.
6.
Navratil
,
A.
,
Wee
,
J.
, and
Peters
,
K.
,
2022
, “
Ultrasonic Frequency Response of Fiber Bragg Grating Under Direct and Remote Adhesive Bonding Configurations
,”
Meas. Sci. Technol.
,
33
(
1
), p.
015204
.
7.
Lissak
,
B.
,
Arie
,
A.
, and
Tur
,
M.
,
1998
, “
Highly Sensitive Dynamic Strain Measurements by Locking Lasers to Fiber Bragg Gratings
,”
Opt. Lett.
,
23
(
24
), pp.
1930
1932
.
8.
Leal
,
W. A.
,
Carneiro
,
M. B. R.
,
Freitas
,
T. A. M. G.
,
Marcondes
,
C. B.
, and
Ribeiro
,
R. M.
,
2018
, “
Low-Frequency Detection of Acoustic Signals Using Fiber as an Ultrasonic Guide With a Distant In-Fiber Bragg Grating
,”
Microw. Opt. Technol. Lett.
,
60
(
4
), pp.
813
817
.
9.
Kim
,
J. M.
,
Marashi
,
C.
,
Wee
,
J.
, and
Peters
,
K.
,
2021
, “
Acoustic Wave Coupling Between Optical Fibers of Different Geometries
,”
Appl. Opt.
,
60
(
36
), pp.
11042
11049
.
10.
Kim
,
J. M.
,
Wee
,
J.
, and
Peters
,
K.
,
2022
, “
Demonstration of Coherent Interference Between Acoustic Waves Using a Fiber Ring Resonator
,”
Sensors
,
22
(
11
), p.
4163
.
11.
Safaai-Jazi
,
A.
,
1987
, “
Analysis and Design of Acoustic Fiber Coupler
,”
Ultrasonic Symposium
,
Denver, CO
,
Oct. 14–16
, pp.
433
437
.
12.
Matthews
,
A. L.
,
Murphy
,
K. A.
,
Rogers
,
R. E.
, and
Claus
,
R. O.
,
1987
, “
Acoustic Fiber Waveguide Coupler
,”
Ultrasonic Symposium
,
Denver, CO
,
Oct. 14–16
, pp.
629
631
.
13.
Hecht
,
J.
,
2015
,
Understanding Fiber Optics
, 5th ed.,
SPIE
,
Bellingham, WA
, pp.
349
350
.
14.
Yariv
,
A.
,
1973
, “
Coupled-Mode Theory for Guided-Wave Optics
,”
IEEE J. Quant. Opt.
,
9
(
9
), pp.
919
933
.
15.
Haag
,
T.
,
Beadle
,
B. M.
,
Sprenger
,
H.
, and
Gaul
,
L.
,
2009
, “
Wave-Based Defect Detection and Interwire Friction Modeling for Overhead Transmission Lines
,”
Arch. Appl. Mech.
,
79
(
6–7
), pp.
517
528
.
16.
Schaal
,
C.
,
Bischoff
,
S.
, and
Gaul
,
L.
,
2015
, “
Energy-Based Models for Guided Ultrasonic Wave Propagation in Multi-wire Cables
,”
Int. J. Solids Struct.
,
64
, pp.
22
29
.
17.
Zhang
,
P.
,
Tang
,
Z.
,
Lu
,
F.
, and
Yang
,
K.
,
2019
, “
Numerical and Experimental Investigation of Guided Wave Propagation in a Multi-Wire Cable
,”
Appl. Sci.
,
9
(
5
), p.
1028
.
18.
Thurston
,
R. N.
,
1978
, “
Elastic Waves in Rods and Clad Rods
,”
J. Acoust. Soc. Am.
,
64
(
1
), pp.
1
37
.
19.
Marashi
,
C.
,
Bradford
,
P.
, and
Peters
,
K.
,
2023
, “
Laser Doppler Vibrometry Measurements of Acoustic Attenuation in Optical Fiber Waveguides
,”
Appl. Opt.
,
62
(
16
), pp.
E119
E124
.
20.
Lee
,
J. R.
, and
Tsuda
,
H.
,
2006
, “
Sensor Application of Fibre Ultrasonic Waveguide
,”
Meas. Sci. Technol.
,
17
(
4
), pp.
645
652
.
21.
Safaai-Jazi
,
A.
, and
Claus
,
R. O.
,
1988
, “
Acoustic Modes in Optical Fiberlike Waveguides
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Contr.
,
35
(
5
), pp.
619
627
.
22.
Chen
,
R.
,
Fernando
,
G. F.
,
Butler
,
T.
, and
Badcock
,
R. A.
,
2004
, “
A Novel Ultrasound Fibre Optic Sensor Based on a Fused-Tapered Optical Fibre Coupler
,”
Meas. Sci. Technol.
,
15
(
8
), pp.
1490
1495
.
23.
Birks
,
T.
,
Russell
,
P. S. J.
, and
Culverhouse
,
D. O.
,
1996
, “
The Acousto-Optic Effect in Single-Mode Fibre Tapers and Couplers
,”
J. Lightwave Technol.
,
14
(
11
), pp.
2519
2529
.
24.
Bures
,
J.
,
2009
,
Guided Optics: Optical Fibers and All-Fiber Components
,
Wiley-VCH
,
Weinheim, Germany
, pp.
176
178
.
25.
Wee
,
J.
,
Alexander
,
K.
, and
Peters
,
K.
,
2021
, “
Self-Referencing Ultrasound Detection of Fiber Bragg Grating Sensor With Two Adhesive Bonds
,”
Meas. Sci. Technol.
,
32
(
10
), p.
105115
.
You do not currently have access to this content.