Abstract

Extended depth of focus (DOF) with high lateral resolution is the primary requirement of the transducer in scanning acoustic microscopy to generate high-resolution images of the three-dimensional sample over a large depth. Traditionally, focused ultrasonic spherical transducers are used to tightly focus the acoustic waves generated from a piezoelectric material for a wide range of applications in industrial, medical, and other fields. Such transducers have a problem of narrow DOF which restricts the imaging range in depth. In the present work, we propose three different transducer designs such as single axicon, central flat axicon, and double axicon, which enable the possibilities of high transverse resolution imaging over greater depths due to the significant increase in DOF. Finite element modeling (FEM) in comsol of a spherical, single axicon, central flat axicon, and double axicon transducer is systematically performed and compared in terms of transverse resolution, DOF, and acoustic pressure in the central lobe. In addition, the single axicon and double axicon transducer modeling is done for different apex angles. It is observed that the central flat axicon transducer allows customizable DOF and the double axicon transducer provides high lateral resolution and reduced pressure in the side lobes compared to a single axicon lens.

References

1.
Briggs
,
A.
,
2013
,
Advances in Acoustic Microscopy
,
Springer Science & Business Media
,
New York
.
2.
Saijo
,
Y.
,
Tanaka
,
M.
,
Okawai
,
H.
,
Sasaki
,
H.
,
Nitta
,
S.-I.
, and
Dunn
,
F.
,
1997
, “
Ultrasonic Tissue Characterization of Infarcted Myocardium by Scanning Acoustic Microscopy
,”
Ultrasound Med. Biol.
,
23
(
1
), pp.
77
85
.
3.
Gao
,
S.-L.
, and
Kim
,
J.-K.
,
1999
, “
Scanning Acoustic Microscopy as a Tool for Quantitative Characterisation of Damage in CFRPs
,”
Compos. Sci. Technol.
,
59
(
3
), pp.
345
354
.
4.
Habib
,
A.
,
Shelke
,
A.
,
Vogel
,
M.
,
Brand
,
S.
,
Jiang
,
X.
,
Pietsch
,
U.
, et al
,
2015
, “
Quantitative Ultrasonic Characterization of c-Axis Oriented Polycrystalline AlN Thin Film for Smart Device Application
,”
Acta Acust. Acust.
,
101
(
4
), pp.
675
683
.
5.
Hofmann
,
M.
,
Pflanzer
,
R.
,
Habib
,
A.
,
Shelke
,
A.
,
Bereiter-Hahn
,
J.
,
Bernd
,
A.
, et al
,
2016
, “
Scanning Acoustic Microscopy—A Novel Noninvasive Method to Determine Tumor Interstitial Fluid Pressure in a Xenograft Tumor Model
,”
Trans. Oncol.
,
9
(
3
), pp.
179
183
.
6.
Wagle
,
S.
,
Habib
,
A.
, and
Melandsø
,
F.
,
2017
, “
Ultrasonic Measurements of Surface Defects on Flexible Circuits Using High-Frequency Focused Polymer Transducers
,”
Jpn. J. Appl. Phys.
,
56
(
7S1
), p.
07JC5
.
7.
Agarwal
,
K.
,
Ojha
,
S.
,
Dalmo
,
R. A.
,
Seternes
,
T.
,
Shelke
,
A.
,
Melandsø
,
F.
, et al
,
2024
, “
Uncertainty Analysis of Atlantic Salmon Fish Scale’s Acoustic Impedance Using 30 MHz C-Scan Measurements
,”
Ultrasonics
,
142
, p.
107360
.
8.
Ojha
,
S.
,
Agarwal
,
K.
,
Shelke
,
A.
, and
Habib
,
A.
,
2024
, “
Quantification of Impedance and Mechanical Properties of Zeonor Using Scanning Acoustic Microscopy
,”
Appl. Acoust.
,
221
, p.
109981
.
9.
SONAXIS
,
2021
, “Piezo-Composite Probes.” http://www.sonaxis.com/sondes-piezo-composite.html
10.
Tommiska
,
O. M.
,
Mäkinen
,
J. M. K.
,
Meriläinen
,
A. I.
,
Hyvönen
,
J. T. J.
,
Nolvi
,
A.
,
Ylitalo
,
T.
, et al
,
2018
, “
Multiphysics Simulation of a High Frequency Acoustic Microscope Lens
,” Lausanne, Switzerland.
11.
Acquaticci
,
F.
,
Lew
,
S. E.
, and
Gwirc
,
S. N.
,
2019
, “
Ultrasound Axicon: Systematic Approach to Optimize Focusing Resolution Through Human Skull Bone
,”
Materials
,
12
(
20
), p.
3433
.
12.
Jiménez-Gambín
,
S.
,
Jiménez
,
N.
,
Benlloch
,
J. M.
, and
Camarena
,
F.
,
2019
, “
Generating Bessel Beams With Broad Depth-of-Field by Using Phase-Only Acoustic Holograms
,”
Sci. Rep.
,
9
(
1
), pp.
1
13
.
13.
Marston
,
P. L.
,
2006
, “
Axial Radiation Force of a Bessel Beam on a Sphere and Direction Reversal of the Force
,”
J. Acoust. Soc. Am.
,
120
(
6
), pp.
3518
3524
.
14.
Marston
,
P. L.
,
2007
, “
Negative Axial Radiation Forces on Solid Spheres and Shells in a Bessel Beam
,”
J. Acoust. Soc. Am.
,
122
(
6
), pp.
3162
3165
.
15.
Thomas
,
J.-L.
, and
Marchiano
,
R.
,
2003
, “
Pseudo Angular Momentum and Topological Charge Conservation for Nonlinear Acoustical Vortices
,”
Phys. Rev. Lett.
,
91
(
24
), p.
244302
.
16.
Zhang
,
L.
, and
Marston
,
P. L.
,
2011
, “
Geometrical Interpretation of Negative Radiation Forces of Acoustical Bessel Beams on Spheres
,”
Phys. Rev. E
,
84
(
3
), p.
035601
.
17.
Hong
,
Z.
,
Zhang
,
J.
, and
Drinkwater
,
B. W.
,
2015
, “
Observation of Orbital Angular Momentum Transfer From Bessel-Shaped Acoustic Vortices to Diphasic Liquid-Microparticle Mixtures
,”
Phys. Rev. Lett.
,
114
(
21
), p.
214301
.
18.
Riaud
,
A.
,
Baudoin
,
M.
,
Thomas
,
J.-L.
, and
Matar
,
O. B.
,
2014
, “
Cyclones and Attractive Streaming Generated by Acoustical Vortices
,”
Phys. Rev. E
,
90
(
1
), p.
013008
.
19.
Masuyama
,
H.
,
Yokoyama
,
T.
,
Nagai
,
K.
, and
Mizutani
,
K.
,
1999
, “
Generation of Bessel Beam From Equiamplitude-Driven Annular Transducer Array Consisting of a Few Elements
,”
Jpn. J. Appl. Phys.
,
38
(
5S
), p.
3080
.
20.
Shi
,
C.
,
Dubois
,
M.
,
Wang
,
Y.
, and
Zhang
,
X.
,
2017
, “
High-Speed Acoustic Communication by Multiplexing Orbital Angular Momentum
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
28
), pp.
7250
7253
.
21.
Jiang
,
X.
,
Liang
,
B.
,
Cheng
,
J. C.
, and
Qiu
,
C. W.
,
2018
, “
Twisted Acoustics: Metasurface-Enabled Multiplexing and Demultiplexing
,”
Adv. Mater.
,
30
(
18
), p.
1800257
.
22.
Ali
,
Z.
,
Zakian
,
C.
, and
Ntziachristos
,
V.
,
2021
, “
Ultra-Broadband Axicon Transducer for Optoacoustic Endoscopy
,”
Sci. Rep.
,
11
(
1
), pp.
1
7
.
23.
Durnin
,
J.
,
1987
, “
Exact Solutions for Nondiffracting Beams I. The Scalar Theory
,”
J. Opt. Soc. Am. A
,
4
(
4
), pp.
651
654
.
24.
Durnin
,
J.
,
Miceli
,
J.
Jr
, and
Eberly
,
J. H.
,
1987
, “
Diffraction-Free Beams
,”
Phys. Rev. Lett.
,
58
(
15
), p.
1499
.
25.
Xiong
,
K.
,
Yang
,
S.
,
Li
,
X.
, and
Xing
,
D.
,
2018
, “
Autofocusing Optical-Resolution Photoacoustic Endoscopy
,”
Opt. Lett.
,
43
(
8
), pp.
1846
1849
.
26.
Kremkau
,
F. W.
,
1993
, “
Multiple-Element Transducers
,”
Radio Graphics
,
13
(
5
), pp.
1163
1176
.
27.
Jeong
,
J.
,
2013
, “
Phase-Apodisation Technique to Extend Depth of Field for High-Frequency Ultrasound Imaging
,”
Electron. Lett.
,
49
(
25
), pp.
1603
1605
.
28.
Cai
,
D.
,
Li
,
G.
,
Xia
,
D.
,
Li
,
Z.
,
Guo
,
Z.
, and
Chen
,
S.-L.
,
2017
, “
Synthetic Aperture Focusing Technique for Photoacoustic Endoscopy
,”
Opt. Express
,
25
(
17
), pp.
20162
20171
.
29.
Wang
,
B.
,
Wei
,
N.
,
Peng
,
K.
, and
Xiao
,
J.
,
2018
, “
Modified Back-Projection Method in Acoustic Resolution-Based Photoacoustic Endoscopy for Improved Lateral Resolution
,”
Med. Phys.
,
45
(
10
), pp.
4430
4438
.
30.
Chernin
,
G.
,
Szwarcfiter
,
I.
,
Scheinert
,
D.
,
Blessing
,
E.
,
Diehm
,
N.
,
Dens
,
J.
, et al
,
2018
, “
First-in-Man Experience With a Novel Catheter-Based Renal Denervation System of Ultrasonic Ablation in Patients With Resistant Hypertension
,”
J. Vasc. Int. Radiol.
,
29
(
8
), pp.
1158
1166
.
31.
Fry
,
F.
,
Ades
,
H.
, and
Fry
,
W.
,
1958
, “
Production of Reversible Changes in the Central Nervous System by Ultrasound
,”
Science
,
127
(
3289
), pp.
83
84
.
32.
Wang
,
D.
,
Adams
,
M. S.
,
Jones
,
P. D.
,
Liu
,
D.
,
Burdette
,
E. C.
, and
Diederich
,
C. J.
,
2021
, “
High Contrast Ultrasonic Method With Multi-Spatiotemporal Compounding for Monitoring Catheter-Based Ultrasound Thermal Therapy: Development and Ex Vivo Evaluations
,”
IEEE Trans. Biomed. Eng.
,
68
(
10
), pp.
3131
3141
.
33.
Barrere
,
V.
,
Sanchez
,
M.
,
Cambronero
,
S.
,
Dupré
,
A.
,
Rivoire
,
M.
, and
Melodelima
,
D.
,
2021
, “
Evaluation of Ultrasonic Attenuation in Primary and Secondary Human Liver Tumors and Its Potential Effect on High-Intensity Focused Ultrasound Treatment
,”
Ultrasound Med. Biol.
,
47
(
7
), pp.
1761
1774
.
34.
Habib
,
A.
,
Wagle
,
S.
,
Decharat
,
A.
, and
Melandsø
,
F.
,
2018
, “
Numerical and Experimental Evaluation of High-Frequency Unfocused Polymer Transducer Arrays
,”
Sensors
,
18
(
6
), p.
1908
.
35.
Habib
,
A.
,
Wagle
,
S.
,
Decharat
,
A.
, and
Melandsø
,
F.
,
2020
, “
Evaluation of Adhesive-Free Focused High-Frequency PVDF Copolymer Transducers Fabricated on Spherical Cavities
,”
Smart Mater Struct.
,
29
(
4
), p.
045026
.
36.
Olympus
,
2021
, “High Frequency Transducers.” https://www.olympus-ims.com/en/ultrasonic-transducers/highfrequency/
37.
Gilmore
,
R.
,
1996
, “
Industrial Ultrasonic Imaging and Microscopy
,”
J. Phys. D: Appl. Phys.
,
29
(
6
), p.
1389
.
38.
39.
COMSOL
,
2017
, “Using Simulation to Study Ultrasound Focusing for Clinical Applications.” https://www.comsol.com/blogs/using-simulation-to-study-ultrasound-focusing-for-clinical-applications/
40.
Gohari
,
H. J.
,
1997
,
Focusing of Ultrasound Beams
,
University of Oslo
,
Oslo, Norway
.
41.
Lu
,
J.-Y.
, and
Greenleaf
,
J. F.
,
1992
, “
Nondiffracting X Waves-Exact Solutions to Free-Space Scalar Wave Equation and Their Finite Aperture Realizations
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
39
(
1
), pp.
19
31
.
42.
Dharmavarapu
,
R.
,
Bhattacharya
,
S.
, and
Juodkazis
,
S.
,
2018
, “
Diffractive Optics for Axial Intensity Shaping of Bessel Beams
,”
J. Opt.
,
20
(
8
), p.
085606
.
43.
Stsepuro
,
N.
,
Nosov
,
P.
,
Galkin
,
M.
,
Krasin
,
G.
,
Kovalev
,
M.
, and
Kudryashov
,
S.
,
2020
, “
Generating Bessel-Gaussian Beams With Controlled Axial Intensity Distribution
,”
Appl. Sci.
,
10
(
21
), pp.
7911
.
You do not currently have access to this content.